
ar
X

iv
:1

30
3.

64
85

v2
 [

cs
.P

F]
 2

7
A

ug
 2

01
3

Identifying Compiler Options to

Minimise Energy Consumption for

Embedded Platforms

James Pallister1, Simon Hollis1 and Jeremy Bennett2

1Department of Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom.

2Embecosm, Palamos House #104, 66/67 High Street, Lymington, SO41 9AL, United
Kingdom.

Email: james.pallister@bristol.ac.uk

This paper presents an analysis of the energy consumption of an extensive number
of the optimisations a modern compiler can perform. Using GCC as a test case,
we evaluate a set of ten carefully selected benchmarks for five different embedded

platforms.
A fractional factorial design is used to systematically explore the large
optimisation space (282 possible combinations), whilst still accurately determining
the effects of optimisations and optimisation combinations. Hardware power
measurements on each platform are taken to ensure all architectural effects on

the energy consumption are captured.
We show that fractional factorial design can find more optimal combinations than
relying on built in compiler settings. We explore the relationship between run-
time and energy consumption, and identify scenarios where they are and are not

correlated.
A further conclusion of this study is the structure of the benchmark has a larger
effect than the hardware architecture on whether the optimisation will be effective,
and that no single optimisation is universally beneficial for execution time or

energy consumption.

Keywords: Compilation; Energy optimisation; Optimisation selection; Fractional factorial
design; Energy efficiency

1. INTRODUCTION

Energy consumption is rapidly becoming one of
the most important design constraints when writing
software for embedded platforms. In the hardware
space there are many features, such as clock gating
and dynamic frequency and voltage scaling, to reduce
the power consumption of electronic devices. However,
inefficient software can negate any gains from the
hardware, so the combination of software and hardware
must be considered together when exploring energy
usage. This study focuses on processors for embedded
platforms, because energy efficiency is particularly
important for many of their target applications.
Optimising the software for low energy consumption

is particularly important when adhering to a strict
power budget. This is the case in many deeply
embedded systems. In these devices the processor is
a significant consumer of energy — a previous study
characterised the CPU power usage of a handheld
device to be between 20 and 40% of the total system
power [1]. A further study, based on 45 nm technology

data from [2], calculated the power dissipation of the
processors in a 64-core network on chip to be 40% of
the entire system [3]. This category was the largest,
ahead of memory, network, and I/O.
Compiler optimisations have the potential for energy

savings with no changes to existing hardware or
software — just tweaking the compiler’s parameters
can have a large effect on the energy consumption [4].
Sometimes this manifests in spikes of higher power
followed by longer periods of lower power; at other
times the power is maintained at a lower level. Both
can reduce total energy. This relationship is complex,
with the program, processor architecture and specific
compiler options interacting. Furthermore, different
optimisation passes interact with each other, so an
option’s efficacy cannot be tested in isolation. For
example, inlining a function may mean that more
effective common subexpression elimination can be
performed, increasing the performance more than either
option individually. Many approaches have attempted
to solve this optimisation selection problem, using

???, Vol. ??, No. ??, ????

http://arxiv.org/abs/1303.6485v2

2 J. Pallister and S. Hollis and J. Bennett

Processor Board name RAM Core clock Other

ARM Cortex-M0 STM32F0DISCOVERY 8KB 48 MHz 64KB Flash
ARM Cortex-M3 STM32VLDISCOVERY 8KB 24 MHz 128KB Flash
ARM Cortex-A8 BeagleBone 256MB 500 MHz VFP/NEON, superscalar
Adapteva Epiphany EMEK3 32KB/core 400 MHz FPU,superscalar,16 core NoC
XMOS L1 XK1 64KB 100 MHz 4×100MHz hardware threads

TABLE 1. The platforms explored in this paper along with some relevant details.

P
ro

cesso
r

Benchmarks

GCC

Shunt
resistor

Compiled

binary

Energy
results

Power
monitor

Software Hardware

Fractional
factorial

design

Optimisation

selection

Results

Database

Code

Power
logger

FIGURE 1. The hardware and software setup used to take
the measurements.

techniques such as statistical methods [5], genetic
algorithms [6] and iterative compilation [7]. All of these
studies conclude that performance can be increased by
choosing the correct set of optimisations, but exploring
the space to find this set is challenging.
The energy an application takes can be measured

using a set-up as shown in Fig. 1. A shunt resistor
is inserted between the power supply and processor,
allowing the voltage drop across it to be measured and
amplified. This can be converted into an instantaneous
power reading by considering the resistance of the
shunt. The power logger assigns a timestamp to each
power sample, allowing them to be integrated into a
total amount of energy consumed during the execution
of the application.
The following section covers the overall aims and

hypotheses we wish to address in this paper. Then, the
related work is discussed. Following this section, our
approach to the problem of benchmark selection and
compiler flags is given. The initial high-level results are
presented with discussion of the first two hypotheses
in Sect. 5. In Sect. 7, there is a short introduction
to fractional factorial design, followed by the results
obtained using this technique. The case studies of
the most effective optimisations, and the interactions
between optimisations is given in Sect. 8. Finally,
concluding remarks to the application developer and
the compiler writer are made.

2. OVERVIEW OF THIS WORK

The overall aim of this work is to identify compiler op-
timisations that are effective at reducing a benchmark’s
energy consumption. This is accomplished by using
fractional factorial design to account for interactions
between the optimisations, without having to enumer-
ate all combinations of optimisations. This analysis is
performed for multiple benchmarks and platforms, al-
lowing general conclusions to be drawn about how the
optimisations affect energy consumption.
We investigate the following hypotheses:

1. The time and energy required for a computation
are always proportional to one another. We find
investigate and present examples where energy and
time are not correlated and explain why (Sect. 5).

2. There exists a set of compiler optimisations
that gives a lower energy consumption than the
predefined optimisation levels (Sect. 6).

3. It is possible to search the compiler optimisation
space in an efficient and systematic manner, to
assign each optimisation an overall effectiveness
(Sect. 7).

4. There is no universally good optimisation across
multiple benchmarks and platforms (Sect. 8).

We will evaluate the validity of these hypotheses
by performing a series of practical experiments which
target the set of optimisations enabled at various
optimisation levels of a real compiler. This allows the
optimisations to be measured for their effect on energy.
Three types of experiment are performed in this study:

High-level. Each optimisation level (predefined set of
optimisations) is tested for each benchmark and
platform. This is a small number of tests, exploring
the overall effect of the optimisation levels.

Fractional factorial design. A fractional factorial
design is used to find the effectiveness of each
optimisation flag defined at the optimisation
level. This experiment is repeated for each
optimisation level, and for each benchmark and
platform combination. A large number of tests
are performed for each combination of benchmark,
platform and optimisation level. This is the
first time this technique has been applied across
multiple platforms for the purpose of analysing
compiler optimisations.

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 3

Case study. Two case studies are performed. The
first looks at the most effective optimisation
flags across benchmarks and platforms, extracted
from the fractional factorial design. The second
explores the interactions between optimisations by
exhaustively enumerating every combination of a
small set of optimisations.

All the energy measurements in this paper are taken
using physical measurement circuitry attached to the
processors. This avoids the use of models which could
be inaccurate, or modelling synthetic processors with
no real world counterpart. A diagram of the software
and hardware setup is shown in Fig. 1. By using
commonly available platforms and processors, along
with some more novel architectures, the results are
applicable in general while still providing insight into
how different types of architectures perform. It is
important to consider a wide range of platforms when
analysing energy consumption, since the structure of
the processor’s pipeline has a large effect on both
the conditions in which energy consumption is high,
and the types of optimisations which are effective.
The platforms examined, shown in Tab. 1, have a
wide range of pipeline depths, memory bandwidth
capabilities and numbers of registers, allowing analysis
of how an optimisation’s effect on energy changes under
these circumstances (an analysis of how the processor’s
features affect the energy consumption is given in
Sect. 5).
This work makes the following contributions:

• The use of fractional factorial design to analyse a
previously intractable optimisation space of GCC
4.7’s optimisation options.

• Analysis of relative importance of each optimisa-
tion across multiple benchmarks and platforms.

• The answers to the previously given hypotheses.
• Commentary on how these techniques and results

can be used by application developers and compiler
writers.

3. RELATED WORK

3.1. Compilers & Energy

To date there has been very little work that extensively
explores the effect that different compiler optimisations
have on energy consumption. However, there have been
many studies that look at the effect of optimisations
on execution time [5, 8], and several studies suggesting
that execution time can be used as a proxy for energy
usage [9, 10].
The topic of performance and energy being highly

correlated is addressed in [11]. This work explored
several different overall optimisation levels, as well
as four specific optimisations, using the Wattch

simulator [12] to estimate energy results. However, the
specific optimisations were all applied individually on

top of the first optimisation level, without exploring
any possible interactions between the optimisations.
The main conclusion drawn from this study was that
most optimisations reduce the number of instructions
executed, hence reducing energy consumption and
execution time simultaneously.
Of the studies that look at individual optimisations

and their effects on energy or power, most focus
on only a few optimisations in isolation and few
consider multiple platforms with different architectural
features. Commonly explored optimisations, such
as loop unrolling [13], loop fusion [14], function
inlining [15] and instruction scheduling [16], have been
examined extensively for different platforms using both
simulators and hardware measurements.
A drawback of those studies that explore energy con-

sumption is that many of them choose to use simu-
lators as opposed to taking hardware measurements.
The Wattch simulator is designed to allow easy energy
measurements while exploring architectural configura-
tions and is established at being within 10% of an in-
dustry layout-level power tool. However, Wattch does
not model every hardware component in the processor,
which makes it difficult to be certain about the total
energy consumption of the processor.
SimplePower [17] is another simulator that has been

used to explore the energy consumption of the software
running on a processor. This simulator targets a
five stage RISC pipeline, with energy consumption
estimates based on the number of transitions on bus
signal lines as well as various other components.
Various other models have been created to simulate

power consumption of the processor, including complex
instruction level models [18], function-level models [19]
and hybrids of these [20]. However, these all suffer the
drawback that some energy consumption effects may
not be modelled, potentially skewing the results.

3.2. Optimisations Targeting Energy

Many previous studies look at how to utilise existing

optimisations to target energy consumption. However,
all of these optimisations were written with the aim
of reducing execution time, not energy consumption.
Several other techniques have been proposed to
develop optimisations that specifically target energy
consumption.
An analysis of the techniques the compiler can

perform to optimise for energy was carried out by
Tiwari, Malik and Wolfe [21]. They identified several
possible techniques that compilers could use to reduce
the energy consumption of programs. They were:

• Reorder instructions to reduce switching.
• Reduce switching on address lines.
• Reduce memory accesses.
• Improve cache hits.
• Improve page hits.

???, Vol. ??, No. ??, ????

4 J. Pallister and S. Hollis and J. Bennett

The last three will also normally increase perfor-
mance as well as reduce energy.
Several novel types of compiler optimisations have

been proposed. Seth et al [22] explored the
possibility of using the compiler to insert idle

instructions automatically, increasing the execution
time up to a set limit. Using the SIMD pipeline
has been shown to decrease energy consumption [23]
by roughly 25%. Scheduling instructions to minimise
the inter-instruction energy cost was evaluated to be
another effective method to reduce a program’s energy
consumption [24]. Exploiting differences in energy
consumption between other function units has been
suggested in [25], where it is noted that strength
reduction may use a more efficient shifter rather than a
power hungry multiplier.
The use of scratchpad memory has been used to

increase the energy efficiency of processors with these
features in [26]. Other techniques have also been
employed to reduce the energy cost of going to memory
by accounting for the bit-width required by the variable
being accessed [27].

3.3. Optimisation Choice

The challenge of choosing the optimisations and their
order has been explored and many methodologies
proposed for choosing an optimal set of optimisations.
Chakrapani et al. attempt to classify optimisations

by the effect they have on performance and energy [25].
This work used both hardware measurements and a
gate-level simulation to derive the results, separating
the optimisations into the following three classes:

• Reduction in energy consumption due to

increase in performance. Optimisations in this
class reduce the number of cycles or instructions
needed to complete the application and thus less
overall work is done.

• Optimisations that reduce energy without

improving the performance. These optimisa-
tions reduce the instantaneous power in portions
of the program without increasing the number of
cycles to compute the result. Scheduling instruc-
tions to reduce switching and making use of power
efficient functional units often fall into this cate-
gory.

• Optimisations that increase energy con-

sumption or decrease performance. These in-
clude optimisations which can sometimes have un-
expected performance hits, such as loop unrolling
and function inlining. The increase in energy con-
sumption can come from either a longer running
time at the same average power, or a higher aver-
age power.

Iterative compilation has been examined as a
possibility for choosing optimisations that reduce power
by Gheorghita et al [28]. In this paper, the effect

of different loop unrolling and loop tiling parameters
on energy consumption is examined for three linear-
algebra-based benchmarks using a simulator. The
paper concluded that iterative compilation was an
effective method of decreasing energy consumption as
well as improving performance.
Other approaches have looked at genetic algorithms

for optimisation selection [6] and optimisation phase
ordering [29]. While these techniques are shown to
be effective, they have the drawback that the reasons
behind an optimisation’s selection is not obvious.
Another study [30] has explored genetic algorithms
in the context of optimising multiple objectives.
This study used the technique to balance the trade-
off between code size, performance and worst-case
performance, and could also optimise for any single
objective at the cost of the others.
These techniques do not expose the relationships

between optimisations, instead opting to search though
the optimisation space and making a best guess about
where to look next. In this paper, we improve these
shortcomings by using fractional factorial design [31]
to explore the most effective optimisations and the
interactions between them.
Fractional factorial design, as a method for exploring

the interactions of compiler optimisations was discussed
in [32]. Nine optimisations were examined, using a
fractional factorial technique to isolate the interactions
and choose a set of optimisations that gave better
performance than just enabling all the optimisations.
This concept was extended by Haneda et al. [33]
to combine the results of running fractional factorial
design on several benchmarks into one set of flags.
A similar study conducted by Patyk et al [34],

extended this work to energy efficiency. The study
explored a range of GCC’s options, with an aim to
reduce energy consumption by identifying significant
optimisations, then excluding them from further
exploration using fractional factorial design. We use
this technique to analyse the optimisations rather than
optimise for the energy consumption.
These methods all require testing over many different

compilations, which is a significant overhead when
finding an optimal set. The MILEPOST GCC [35]
study implemented an alternative to this, using machine
learning to guess which optimisation flags would best
apply to a given program. Features are extracted from
the program, which are then matched against previous
known results from previous compilations. This allows a
set of optimisations to be predicted from just the source
code. The drawback of this approach is that a large
number of programs and optimisation combinations
must be used to train the database, and there is not
yet knowledge about the appropriate program features
for predicting energy consumption or if they exist.
The majority of the studies listed in this section

only examine one platform, and it is currently
unknown whether their results would apply across

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 5

Name Source Category

2D FIR WCET Branching, FP
Blowfish MiBench Integer
CRC32 MiBench Branching, integer
Cubic solver MiBench Memory, integer
Dijkstra MiBench Branching, integer
FDCT WCET Branching, memory
Float matmult WCET Memory, FP
Int matmult WCET Memory, integer
Rjindael MiBench Branching, integer
SHA MiBench Memory, integer

TABLE 2. Benchmarks selected, and the types of
instructions they execute intensively (FP short for Floating
Point).

several different platforms. Furthermore, iterative
compilation [7] and other adaptive techniques used can
leave holes of potential combinations of optimisations
unexplored (due to the huge numbers of combinations
possible). This can lead to the most optimal
configurations not being found.

4. APPROACH

In this paper, we present an improved technique for
testing the effectiveness of large numbers of compiler
optimisations and their impact on energy consumption
and run-times. The technique is based on the concept
of fractional factorial design (see Sect. 7).

4.1. A New Benchmark Set

To explore the impact of the optimisations, a realistic
set of test input programs is required. There have been
many attempts to find representative programs, but
none apply to a wide range of embedded processing
systems. Frequently a benchmark will require host
operating system support, requiring features which
are rarely available on deeply embedded platforms.
Also the size of the benchmark and the dataset it
uses becomes of critical importance when running on
platforms with such limited memory. Because of the
lack of suitable suites, we evaluated each benchmark
from a large number of contemporary suites. Individual
benchmarks were considered for inclusion based on their
distribution of instruction types. Further details on this
are given below, and described in [36].
This set of 10 benchmarks, shown in Tab. 2, covers

real world and synthetic applications across different
aspects of the target platform. These are selected
from MiBench [37] and the Worst Case Execution Time
(WCET) [38] suites. Previous work on modelling the
energy consumption of processors has shown that the
pipelines and functional units enabled have a significant
impact on the energy consumption. To cover these
points, the benchmarks were characterised according to
the following coarse criteria:

• Integer pipeline intensity. The frequency at
which integer arithmetic instructions occur.

• Floating point intensity. The frequency of
floating point operations.

• Memory intensity. Whether the program
requires a large amount of memory bandwidth or
not.

• Branch frequency. How often the code branches.

Similar categories of instruction types have been used
previously to give a high level overview of the type of
computation an application is performing [39]. Our
categories group similar instruction, such as the loads
and stores in MiBench, since energy consumption is
predominately related to the target functional unit,
rather than the specific operation.
This set of benchmarks is chosen because they do

not require a host operating system. This prevents the
benchmark from being pre-empted by another process
and reducing the accuracy of the results. It also makes
the execution of the benchmarks deterministic. For the
same reasons, the benchmarks do not perform any I/O.
The benchmarks are also chosen carefully with

regards to memory requirements. The benchmarks are
designed to fit into the memory footprint of a wide
range of embedded systems, with or without a memory
hierarchy. In the cache-based systems we explore, this
often has the effect that the benchmark fits entirely
into a single level of cache, reducing complexity but
potentially also accuracy. This is a trade-off that we
have found necessary when generating benchmarks that
cover a wide range of hardware platforms, and has
the benefit that the benchmarks exhibit predictable
memory accesses on most platforms.

4.2. Compiler Flags

We explore the impact of compiler optimisations using
the GCC toolchain on the architectures shown in Tab. 1.
GCC exposes its various optimisations via a number
of flags that can be passed to the compiler [40]. We
explore which flags have a significant impact on energy
consumption and execution time.
The experiments are performed with different

benchmarks, so a complete picture of architecture,
optimisation and application can be seen. Using this
combination, the following points of interest can be
explored:

• The relationship between time and energy for our
benchmarks;

• Architectural effects on energy consumption; and
• Application effects on energy consumption.

By using the techniques we have just outlined, we can
rigorously evaluate our hypotheses, answering questions
about the relationship between time and energy, and
optimisation choice.

???, Vol. ??, No. ??, ????

6 J. Pallister and S. Hollis and J. Bennett

2dfir

blowfish

crc32

cubic

dijkstra

fdct

float_matmult

int_matmult

rijndael

sha

cortex-m0 cortex-m3 cortex-a8 xmos epiphany

O0 O1 O2 O3 O4 Os
Optimization Level

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
e
rf

o
rm

a
n
c
e
 r

e
la

ti
v
e
 t

o
 O

0

Average power

Execution time

Energy consumed

FIGURE 2. Energy, time and power results for benchmark-platform combinations. Optimisation levels O0 to O4. O4 is O3
with link-time optimisation. The last point is Os — optimise for space. Some results are unavailable for when the compiler
crashed while producing the output binary.

5. TIME AND ENERGY

The following section addresses the first hypothesis, and
show that energy consumption and execution time are
proportional to each other across all the benchmarks
and platforms. A high level overview of each platform
and benchmark for the different optimisation levels is
given in Fig. 2. This figure shows a line graph for
each combination, displaying the effect of the broad
optimisation levels O1, O2, O3, O4 (defined as O3 with
link time optimisation) and Os (optimise for space) on
time, energy and average power when compared to the
same program with all optimisations disabled.
For the Cortex-M0, very little difference between

energy and time is seen due to it being the simplest
processor tested, it has a three stage pipeline without
forwarding logic. The pipeline behaviour is simple, only
stalling if it encounters a load or a branch, thus it is
not sensitive to specific code sequences. The Cortex-
M3 exhibits very similar behaviour, with some very

slight differences between energy and time. The micro-
architecture in this processor is more complex, featuring
branch speculation and a larger instruction set [41].
The XMOS processor has a four stage pipeline, sim-

ilar to the Cortex-M3 in complexity and performance.
It should also be noted that the compiler for the XMOS
processor uses an LLVM backend [42] for code genera-
tion, featuring different optimisations. Due to this the
result set for this processor is not as extensive as the
other four, but is still broadly comparable.
The Epiphany processor also sees a large correlation

between the energy consumption and execution time.
There is some divergence when the superscalar core in
the processor is able to dispatch multiple instructions
simultaneously. This gives the compiler more potential
for creating advantageous code sequences.
The greatest difference between energy and time was

discovered while using the Cortex-A8. For the majority
of the benchmarks the execution time reduces more
than the energy. This is due to multiple instructions

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 7

-f
g
u
e
s
s
-b

ra
n
c
h
-p

ro
b
a
b
il
it

y
-f

tr
e
e
-d

o
m

in
a
to

r-
o
p
ts

-f
tr

e
e
-c

h
-f

if
-c

o
n
v
e
rs

io
n

-f
a
u
to

-i
n
c
-d

e
c

-f
if
-c

o
n
v
e
rs

io
n
2

-f
tr

e
e
-r

e
a
s
s
o
c

-f
ip

a
-r

e
fe

re
n
c
e

-f
tr

e
e
-c

o
p
y
-p

ro
p

-f
tr

e
e
-b

it
-c

c
p

-f
m

e
rg

e
-c

o
n
s
ta

n
ts

-f
tr

e
e
-f

re
-f

m
o
v
e
-l

o
o
p
-i

n
v
a
ri

a
n
ts

-f
in

li
n
e
-f

u
n
c
ti

o
n
s
-c

a
ll
e
d
-o

n
c
e

-f
d
e
la

y
e
d
-b

ra
n
c
h

-f
tr

e
e
-s

in
k

-f
s
h
ri

n
k
-w

ra
p

-f
s
p
li
t-

w
id

e
-t

y
p
e
s

-f
tr

e
e
-c

o
p
y
re

n
a
m

e
-f

tr
e
e
-p

ta
-f

tr
e
e
-d

s
e

-f
ip

a
-p

ro
fi
le

-f
c
o
m

b
in

e
-s

ta
c
k
-a

d
ju

s
tm

e
n
ts

-f
ip

a
-p

u
re

-c
o
n
s
t

-f
tr

e
e
-s

ra
-f

d
c
e

-f
tr

e
e
-d

c
e

-f
tr

e
e
-c

c
p

-f
tr

e
e
-p

h
ip

ro
p

-f
d
e
fe

r-
p
o
p

-f
c
o
m

p
a
re

-e
li
m

-f
o
m

it
-f

ra
m

e
-p

o
in

te
r

-f
d
s
e

-f
c
p
ro

p
-r

e
g
is

te
rs

-f
tr

e
e
-l

o
o
p
-o

p
ti

m
iz

e
-f

tr
e
e
-t

e
r

-f
tr

e
e
-f

o
rw

p
ro

p

-f
p
e
e
p
h
o
le

2
-f

c
ro

s
s
ju

m
p
in

g
-f

tr
e
e
-v

rp
-f

re
ru

n
-c

s
e
-a

ft
e
r-

lo
o
p

-f
d
e
le

te
-n

u
ll
-p

o
in

te
r-

c
h
e
c
k
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s
2

-f

s
c
h
e
d
-i

n
te

rb
lo

c
k

-f
tr

e
e
-b

u
il
ti

n
-c

a
ll
-d

c
e

-f
re

o
rd

e
r-

b
lo

c
k
s

-f
a
li
g
n
-f

u
n
c
ti

o
n
s

-f
s
c
h
e
d
-s

p
e
c

-f
a
li
g
n
-l

a
b
e
ls

-f
c
s
e
-f

o
ll
o
w

-j
u
m

p
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s

-f
d
e
v
ir

tu
a
li
z
e

-f
p
a
rt

ia
l-

in
li
n
in

g
-f

c
a
ll
e
r-

s
a
v
e
s

-f
in

li
n
e
-s

m
a
ll
-f

u
n
c
ti

o
n

s
-f

re
o
rd

e
r-

fu
n
c
ti

o
n
s

-f
e
x
p
e
n
s
iv

e
-o

p
ti

m
iz

a
ti

o
n
s

-f
g
c
s
e

-f
th

re
a
d
-j

u
m

p
s

-f
a
li
g
n
-l

o
o
p
s

-f
tr

e
e
-s

w
it

c
h
-c

o
n
v
e
rs

io
n

-f
ip

a
-s

ra
-f

s
tr

ic
t-

a
li
a
s
in

g
-f

tr
e
e
-t

a
il
-m

e
rg

e
-f

re
g
m

o
v
e

-f
in

d
ir

e
c
t-

in
li
n
in

g
-f

c
s
e
-s

k
ip

-b
lo

c
k
s

-f
s
tr

ic
t-

o
v
e
rf

lo
w

-f
tr

e
e
-p

re
-f

o
p
ti

m
iz

e
-s

ib
li
n
g
-c

a
ll
s

-f
g
c
s
e
-l

m
-f

a
li
g
n
-j

u
m

p
s

-f
ip

a
-c

p8

4

2

0

2

4

8

10
P
e
rc

e
n
ta

g
e
 t

i
re

la
ti

v
e
 t

o
 O

1

gs gs

Energy

FIGURE 3. Blowfish benchmark on the Cortex-M3 platform. Individual options are enabled or disabled on top of the O1

optimisation level.

being executed simultaneously by the superscalar core,
reducing the amount of time taken but not the energy
consumption, as the same total work is still being
done. We infer from this that the amount of pipeline
activity has a significant measurable effect on the energy
consumption. The gap is also seen to widen at the O2

level, due to instruction scheduling being enabled there.
These results support our first hypothesis that time

and energy are broadly correlated. The strongest
correlation occurs in the qualitatively ‘simplest’
pipelines. Increasing pipeline complexity means there
are more opportunities for architectural energy saving
measures (clock gating, etc.) making the complex
processor’s energy profile more variable and improving
the potential for compiler optimisation impact.

6. OPTIMISATION POTENTIAL

The second hypothesis to explore is that it was
possible to find a set of optimisations that perform
better than the standard optimisation levels. Fig. 3
shows each option in O1 and O2 optimisation levels
enabled on top of the flags in O1. By examining the
left of the graph, it can be seen that by disabling
-fguess-branch-probability (in this specific run)
the energy decreases by 4% at the expense of some
additional run-time. This shows that a set of
optimisations that performs better than the predefined
O1 optimisation level.
This conclusion is in line with much of the

related work, that has focused on choosing a set of
optimisations which is more optimal than the standard
optimisation levels for a given benchmark.

000 001

011

111110

010

100 101

X3

X2

X1

001

111

010

100

X3

X2

X1

Full factorial Fractional factorial

FIGURE 4. Reducing a 3-factor full factorial design to a
‘half fraction’ design.

7. FRACTIONAL FACTORIAL DESIGN

This section explores the third hypothesis — a method
to systematically explore the optimisation space.
GCC has over 150 different options that can be

enabled to control optimisations. The majority of these
options are binary — the optimisation pass is either
enabled or disabled. To further complicate matters,
an optimisation path may be affected by other passes
happening before it. It is not feasible to test all possible
combinations of options, therefore a trade-off has to
be made. One of our main contributions is to deploy
fractional factorial design [31] (FFD) to massively
reduce the number of tests to explore the space, whilst
still identifying the options that contribute to run-time
and energy. This approach has been explored on a small
scale in [32], where nine optimisations were explored in
just 35 tests as opposed to the 512 required for a full
factorial design. It has also been explored by Haneda

???, Vol. ??, No. ??, ????

8 J. Pallister and S. Hollis and J. Bennett

-f
o
m

it
-f

ra
m

e
-p

o
in

te
r

-f
tr

e
e
-f

o
rw

p
ro

p
-f

g
u
e
s
s
-b

ra
n
c
h
-p

ro
b
a
b
il
it

y
-f

tr
e
e
-l
o
o
p
-o

p
ti

m
iz

e
-f

tr
e
e
-c

c
p

-f
d
c
e

-f
if
-c

o
n
v
e
rs

io
n

-f
tr

e
e
-d

c
e

-f
in

li
n
e
-f

u
n
c
ti

o
n
s
-c

a
ll
e
d
-o

n
c
e

-f
d
s
e

-f
m

e
rg

e
-c

o
n
s
ta

n
ts

-f
s
h
ri

n
k
-w

ra
p

-f
d
e
la

y
e
d
-b

ra
n
c
h

-f
ip

a
-p

u
re

-c
o
n
s
t

-f
tr

e
e
-d

o
m

in
a
to

r-
o
p
ts

-f
tr

e
e
-c

h
-f

tr
e
e
-b

it
-c

c
p

-f
ip

a
-r

e
fe

re
n
c
e

-f
if
-c

o
n
v
e
rs

io
n
2

-f
ip

a
-p

ro
fi
le

-f
tr

e
e
-s

ra
-f

a
u
to

-i
n
c
-d

e
c

-f
m

o
v
e
-l

o
o
p
-i
n
v
a
ri

a
n
ts

-f
tr

e
e
-s

in
k

-f
c
p
ro

p
-r

e
g
is

te
rs

-f
c
o
m

p
a
re

-e
li
m

-f
tr

e
e
-p

h
ip

ro
p

-f
c
o
m

b
in

e
-s

ta
c
k
-a

d
ju

s
tm

e
n
ts

-f
tr

e
e
-d

s
e

-f
d
e
fe

r-
p
o
p

-f
tr

e
e
-c

o
p
y
-p

ro
p

-f
s
p
li
t-

w
id

e
-t

y
p
e
s

-f
tr

e
e
-p

ta
-f

tr
e
e
-c

o
p
y
re

n
a
m

e
-f

tr
e
e
-t

e
r

-f
tr

e
e
-r

e
a
s
s
o
c

-f
tr

e
e
-f

re

12

10

8

6

4

2

0

2
P
e
rc

e
n
ta

g
e
 t

im
�
��
�
�
�g
�
�

re
la

ti
v
e
 t

o
 O

0

S���ificant

S���ificant

Energy

FIGURE 5. Blowfish benchmark on the Cortex-M0
platform. Individual options enabled at O1 are listed.

et al. in [33], where a fractional factorial design is used
to inform the choice of optimizations. We apply this
technique to allow us to analyse and draw conclusions
about these large number of optimizations.
An example full factorial design is shown on the left

of Fig. 4. This example shows three factors with every
possible combination enumerated. A fractional factorial
design with the number of tests halved is shown on the
right, yet still allows the difference between any two
factors to be estimated.
The drawback to this approach is that the high-

order interactions between options (effects due to
multiple options being enabled) will not be discernible.
Fortunately, this is not usually a problem as these types
of interactions are statistically rare. The degree to
which this happens is specified by the FFD’s resolution.
A resolution 5 design ensures that the main effects
are not aliased with anything lower than 4th order
interactions.
Using the Yates algorithm [31], the effect for any

single or combination of factors can be found from
the data. This gives an estimate for how much this
factor or interaction affects the result of the experiment.
The Mann-Whitney statistical test is used to determine
whether the factor represents a significant change in
performance as detailed in [34] and [5].
All FFDs used were generated by the statistical

program, R [43] (a statistical programming language),
using the FrF2 library [44].

7.1. FFD Results

The results from the FFD experiments provide
additional evidence to back up the first hypothesis, that
execution time and energy are correlated.
Results showing the correlation between time and

energy are shown in Fig. 5. This shows the main

-f
s
c
h
e
d
u
le

-i
n
s
n
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s
2

-f
p
e
e
p
h
o
le

2
-f

tr
e
e
-p

re
-f

c
s
e
-f

o
ll
o
w

-j
u
m

p
s

-f
o
p
ti

m
iz

e
-s

ib
li
n
g
-c

a
ll
s

-f
g
c
s
e

-f
s
tr

ic
t-

o
v
e
rf

lo
w

-f
g
c
s
e
-l

m
-f

c
ro

s
s
ju

m
p
in

g
-f

c
a
ll
e
r-

s
a
v
e
s

-f
a
li
g
n
-l

o
o
p
s

-f
a
li
g
n
-l

a
b
e
ls

-f
th

re
a
d
-j

u
m

p
s

-f
in

d
ir

e
c
t-

in
li
n
in

g
-f

s
tr

ic
t-

a
li
a
s
in

g
-f

p
a
rt

ia
l-
in

li
n
in

g
-f

a
li
g
n
-j

u
m

p
s

-f
d
e
le

te
-n

u
ll
-p

o
in

te
r-

c
h
e
c
k
s

-f
in

li
n
e
-s

m
a
ll
-f

u
n
c
ti

o
n

s
-f

ip
a
-c

p
-f

s
c
h
e
d
-i

n
te

rb
lo

c
k

-f
re

o
rd

e
r-

b
lo

c
k
s

-f
tr

e
e
-b

u
il
ti

n
-c

a
ll
-d

c
e

-f
e
x
p
e
n
s
iv

e
-o

p
ti

m
iz

a
ti

o
n
s

-f
s
c
h
e
d
-s

p
e
c

-f
re

g
m

o
v
e

-f
d
e
v
ir

tu
a
li
z
e

-f
c
s
e
-s

k
ip

-b
lo

c
k
s

-f
ip

a
-s

ra
-f

a
li
g
n
-f

u
n
c
ti

o
n
s

-f
tr

e
e
-v

rp
-f

re
o
rd

e
r-

fu
n
c
ti

o
n
s

-f
tr

e
e
-t

a
il
-m

e
rg

e
-f

tr
e
e
-s

w
it

c
h
-c

o
n
v
e
rs

io
n

-f
re

ru
n
-c

s
e
-a

ft
e
r-

lo
o
p5

4

3

2

1

0

1

P
e
rc

e
n
ta

g
e
 t

i	

�

�

�
�
�

re
la

ti
v
e
 t

o
 O

0

����ificant

Energy

FIGURE 6. FDCT benchmark on the Cortex-M3
platform. Individual options enabled at O2 are listed.

effect each optimisation has on the runtime and energy
consumption, as calculated by the FFD. A small
percentage change is statistically significant because
these results are derived from a total of 2048 separate
runs. This significance is calculated using the Mann-
Whitney test. The bracket above the bars indicates
when the result satisfies the following hypothesis: there
is 95% certainty that the result represents a significant
impact on the energy consumption of the benchmark.
Fig. 6 highlights a discrepancy that occurred between

execution time and energy consumption, even for very
similar optimisations. The first two options listed
(-fschedule-insns and -fschedule-insns2) both
schedule instructions to reduce pipeline stalls. However
the latter option performs its scheduling pass after
register allocation, whereas the first performs it before.
The option to schedule instructions after the register
allocator can be explained by recognising that the
scheduling will reduce stall cycles, which have a below
average energy consumption. Overall, this reduces
time more than energy (removing cycles that are below
average energy will increase the average energy). The
other option, however, is more unexpected in that the
energy is reduced by a higher proportion than execution
time. Upon further investigation this is partly due to
fewer spill instructions being generated and partly due
to instruction set effects. The scheduling allows causes
some register-specific instructions to be converted to
ones that are able to access additional registers, further
removing the need to access memory.

7.2. Efficient SIMD Units

In this section we analyse a specific case where energy
consumption and execution time are not correlated.
An interesting effect is seen in 2D FIR for the Cortex-

A8. The execution time decreases more than the energy

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 9

-f
g
c
s
e
-a

ft
e
r-

re
lo

a
d

-f
tr

e
e
-v

e
c
to

ri
z
e

-f
tr

e
e
-s

lp
-v

e
c
to

ri
z
e

-f
p
re

d
ic

ti
v
e
-c

o
m

m
o
n
in

g

-f
ip

a
-c

p
-c

lo
n
e

-f
in

li
n
e
-f

u
n
c
ti

o
n
s

-f
u
n
s
w

it
c
h
-l

o
o
p
s

-f
ir

a
-l

o
o
p
-p

re
s
s
u
re

-f
tr

e
e
-l

o
o
p
-d

is
tr

ib
u
te

-p
a
tt

e
rn

s1.4

1.2

1.0

0.8

0��

0.4

0.2

0.0

0.2

P
�
��
�
�
��
�
�
��
�
�
 �
�
�
��
!
"
��
#�
��
$
�
�%
&
'

()*+),)-.+/

Energy - core

Time

FIGURE 7. 2D FIR benchmark on the Cortex-A8
platform. Individual options enabled at O3 are listed.

NEON Instruction De-
pendencies

Continuous Power
Consumption

No Yes 168 mW
No No 195 mW
Yes Yes 158 mW
Yes No 159 mW

TABLE 3. Micro-benchmark results for multiplications
on the NEON unit, with and without inter-instruction
dependencies.

consumption up to O2. However, when enabling O3

the proportional decrease in energy is greater than
execution time (a lower average power). On further
investigation, this is caused by the -ftree-vectorize

optimisation having an impact on energy consumption
with no change in execution time (shown in Fig. 7).
This option vectorizes loops, so that SIMD instructions
can be inserted. We do not see a performance boost
due to the structure of the Cortex-A8 pipeline, where
it is expensive to copy results between the NEON unit
and the standard registers.
Further investigation of the NEON SIMD unit was

done using some simple tests consisting of executing
a single instruction many times. The results of
these are shown in Tab. 3, showing doing continuous
multiplication on the NEON unit uses around 20%
less power than using the normal Cortex-A8 multiplier.
When considering the similar number of cycles to
execute each type of multiply, this results in a reduction
in energy consumption when using the NEON unit.
This is in line with what previous studies have
found [23] and shows that by using the hardware to
its full capacity, the greatest energy savings can be
achieved.

8. THE UNIVERSALITY OF FLAGS

We have seen large variations based on optimisation
flags, and so an interesting problem for compiler
designers is how to choose an optimal set of flags across
different hardware platforms and applications. This
section explores which individual flags had the largest
effect in our experiments, our fourth hypothesis: that
a consistently good optimisation is not seen across all
benchmarks and platforms. Tab. 4 lists the results
for this section, with the top three optimisation flags
(where that optimisation has a significant effect, as per
the Mann-Whitney test) identified for each benchmark
and platform combination. Each letter represents an
optimisation that is labelled in the table below. We
also show the number of times this flag occurs.
Only 20 out of 82 (the number of flags enabled

by O1, O2 and O3) options examined appear in the
table. This supports the argument that many of the
options have little effect on the energy consumption,
and consequently performance.
For the ARM platforms, a similar set of options

appears for the same benchmarks. Common options for
the same benchmarks are expected, since optimisations
are triggered by the structure of the source code.
However, the opposite of this is seen for the Epiphany
processor — there are three optimisations that are
consistently effective at reducing energy. A particularly
unusual option to be consistently effective is -fdce:
dead code elimination, removing code which is never
used by the application. However, this also allows the
compiler to eliminate parts of the control flow graph,
removing branches and decreasing the amount of work
the application performs.
The optimisation listed most frequently in the table

is -ftree-dominator-opts. The prevalence of this flag
is likely due to it enabling several simple optimisation
passes, performing optimisations such as copy propa-
gation and expression simplification. Another effective
optimisation is -fomit-frame-pointer. This optimi-
sation frees an additional register for general use by not
using a frame pointer. This optimisation is seen fre-
quently on the ARM platforms, however not at all on
the Epiphany. This is likely due to the ARM processors
suffering from greater register pressure since they only
have 16 registers compared to the Epiphany’s 64.
We see some interesting correlations between plat-

forms. The CRC32 benchmark does not have much
optimisation potential since it consists of simple opera-
tions in a tight loop. We indeed observe that very few
optimisations have a significant effect. Only one com-
mon option (-fmove-loop-invariants) appears across
three of the four platforms. This optimisation moves re-
dundant calculations out of loops and appears because
the CRC32 benchmark has some very tight loops with
redundant calculation that can be moved outside the
loop regardless of platform.
As observed, some options are seen to affect the

???, Vol. ??, No. ??, ????

10 J. Pallister and S. Hollis and J. Bennett

Benchmark Cortex-M0 Cortex-M3 Cortex-A8 Epiphany
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

2dfir E · · T G I N G B I A D

blowfish C J E J C G K C E D P I

crc32 F · · F · · F G · · · ·

cubic A H · A H · A · · A H R

dijkstra H A C F H A F H A H A ·

fdct J G D J G K M K J A I D

float matmult B E · B E G N L · D I A

int matmult B E C B L F L N M A I D

rijndael C B O C B O K C S D K B

sha C B E B C F B C M D B Q

ID Count Flag ID Count Flag

A 12 -ftree-dominator-opts K 5 -fschedule-insns

B 12 -ftree-loop-optimise L 3 -finline-small-functions

C 11 -fomit-frame-pointer M 3 -fschedule-insns2

D 8 -fdce N 3 -ftree-pre

E 7 -fguess-branch-probability O 2 -ftree-sra

F 7 -fmove-loop-invariants P 1 -fipa-profile

G 7 -ftree-ter Q 1 -ftree-pta

H 7 -ftree-fre R 1 -fcombine-stack-adjustments

I 6 -ftree-ch S 1 -fgcse

J 5 -ftree-forwprop T 1 -fpeephole2

TABLE 4. Table showing the most effective option for each platform-benchmark combination. Options considered were
optimisations enabled by O1, O2 and O3 levels.

energy consumption across benchmarks. This is due
to the optimisations being targeted to specific code
patterns, which only appear in some of the benchmarks.
In particular we see effective options across different
ARM platforms, while these same optimisations are not
effective on the Epiphany. Since each of the ARM
Platforms is using a slightly different instruction set
(Thumb, Thumb+Thumb2 and ARM for the Cortex-
M0, Cortex-M3 and Cortex-A8 respectively), we infer
that the effectiveness of these options is due to
commonalities between these instruction sets — namely
the number of registers.
These results show the difficulty of choosing one

optimisation which is good in all cases. In many
cases the instruction set and micro-architecture of the
processor have a large effect on how much the energy
consumption is reduced. This means that a singularly
good optimisation cannot be chosen.

8.1. Optimisation Chaos

In this section, we expand on the theme of there
being no universally good optimisation by investigating
the effect of interactions between optimisations. We
conclude that there is a chaotic relationship between
the platform, benchmark, and the effectiveness of the
optimisation.
Examining the correlation between optimisations and

their effects is a complex issue. Due to non-linear
interactions, one would expect that the prediction of
effects is difficult. This is borne out by our experimental

results: as seen in previous Figs. 5 and 6, less than
a third of the options have a significant impact. For
the other optimisations, higher order interactions cause
unpredictable effects, where enabling or disabling a
particular optimisation can completely change the effect
of many other subsequent optimisation passes.
In Fig. 3, several unexpected effects worthy of further

investigation can be seen. This graph shows individual
optimisations being turned on and off, using the O1

optimisation level as a base. The flags on the left
of the O1 section were found to decrease the energy
consumption when disabled, an effect not seen in the
FFD results. These flags were chosen for further
exploration.
To explore this inconsistency, a small case study

was performed, where all combinations of four options
were explored. The energy figures for exhaustive
exploration can be seen in Tab. 5, with the aim being
to ascertain whether the effect of this energy reduction
would compound with multiple flags. The O1 column of
this table shows the results of the options applied over
the O1 optimisation level. The O2 column shows the
same but on top of the O2 optimisation level.
From the O1 column, this it can be seen that

there are many interactions occurring between the
options, as simply turning all of these options off
does not decrease the energy (in fact, it increases
the consumption by 1.81%). Furthermore, when
disabled individually, -fguess-branch-probability

and -ftree-dominator-opts decrease the energy by
2.49% and 1.76% respectively. However, when both are

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 11

O1 O2

X1 X2 X3 X4 (mJ) (%) (mJ) (%)

X X X X 5780 0.00 5480 0.00
× X X X 5640 -2.49 5540 1.00
X × X X 5680 -1.76 5480 -0.05
× × X X 5730 -0.93 5620 2.49
X X × X 5650 -2.28 5490 0.09
× X × X 5720 -0.97 5580 1.75
X × × X 5610 -2.90 5480 -0.03
× × × X 5640 -2.33 5530 0.85
X X X × 5760 -0.34 5460 -0.43
× X X × 5720 -1.09 5480 0.03
X × X × 5860 1.45 5490 0.15
× × X × 5960 3.08 5480 0.00
X X × × 5890 1.91 5470 -0.19
× X × × 5870 1.61 5570 1.57
X × × × 5690 -1.56 5480 -0.03
× × × × 5880 1.81 5510 0.41

TABLE 5. Exhaustively exploring 4 options compared to
O1 and O2. (Cortex-M3 with blowfish benchmark). Legend
in Tab. 6.

Key Option

X1 -fguess-branch-probability

X2 -ftree-dominator-opts

X3 -ftree-ch

X4 -fif-conversion

Abs (mJ) Absolute energy measurement in milli-
joules.

O1 (%) Percentage relative to O1.
O2 (%) Percentage relative to O2.
X Optimisation is enabled.
× Optimisation is disabled.

TABLE 6. Legend for Tab. 5.

enabled, the energy consumption (relative to O1) is only
0.93% less, worse than each flag individually.
Different results are seen entirely in the O2 column,

with options that decreased energy consumption on top
of O1 have little or the opposite effect when applied on
top of O2.
This unpredictability suggests that these options

have many interdependencies that are difficult to
predict up front. It also makes choosing an optimal
set of optimisations very challenging. Therefore, one of
our findings is that it is very unlikely that any accurate
prediction mechanism for considering an optimisation
and its effect on a target system exists: the effect will
always be highly dependent on the application to be
used and the platform upon which it resides.

9. WHAT DOES THIS MEAN FOR THE

APPLICATION DEVELOPER?

The existing collections of optimisations at the various
levels do a good job of optimising for performance,
and consequently, energy. These strike a good balance

between ease of use and performance. However, they
will never be as effective as those generated by searching
through the full optimisation space. To avoid running
many tests to find a good solution, developing machine-
learning compiler technologies similar to MILEPOST
GCC [35] would be fitting. A reasonable set of
optimisations can be predicted based on high-level
features and an architecture selection, and this would
greatly reduce the time spent searching as demonstrated
by MILEPOST GCC. This is especially true as the
effectiveness and type of optimisation was found to be
heavily based on the platform and the structure of the
application being compiled (Sect. 8). Predicting the
optimisations in this way would reduce compile times as
well as the energy and execution time of the application.
This study focused on GCC, since it is a

mature compiler supporting many different platforms
and optimisations. As an alternative, the LLVM
compiler [42] is relatively new, with a well defined
set of optimisation passes, whose order can easily be
specified. This extra flexibility means there may be a
better solution to find, but also that it is essentially
searching for a sharper needle in a bigger haystack [45].
The benefits from having this much larger space to
explore may not be worth the trade-off of the time it
takes to find it.

10. WHAT DOES THIS MEAN FOR THE

COMPILER WRITER?

When designing a new optimisation, a compiler writer
must check whether the optimisation is effective, and
under what conditions. Using fractional factorial,
design a compiler writer can check whether the pass
is effective when combined with an arbitrary set of
other optimisations. This avoids the case of the
optimisation being tested in isolation, which will result
in an incorrect analysis because of the interactions
between optimisations. We would recommend that,
when selecting optimisations to be included in a broad
optimisation level, the optimisation is evaluated in this
way and only selected if it has a non-negative effect over
all of the benchmarks.
All the optimisations we show in this paper are

designed for either performance or code size. This
means we cannot draw conclusions about the effect of
dedicated compiler optimisations targeting energy such
as those shown in the related work (Sect. 3.2). Although
all optimisation targets may be beneficial for energy
usage, dedicated energy flags would have to compete
against these other optimisation metrics, meaning that
even if they operate well in isolation, they may not do
well when grouped. There are many opportunities for
further work in this area.

11. CONCLUSION

The first hypothesis of energy consumption and
execution time being correlated in the general case

???, Vol. ??, No. ??, ????

12 J. Pallister and S. Hollis and J. Bennett

was found to be correct across many platforms and
benchmarks. This was first shown to be true by the
high level results, showing only the overall optimisation
levels. The more detailed fractional factorial design
runs also demonstrated this result, showing that most
optimisations had the same relative effect on energy
and time. This result occurs because the majority of
optimisations focus on reducing the total amount of
work performed by the benchmarks — thus minimising
both energy consumption and execution time.
By adding and subtracting individual flags on top

of the whole optimisation levels we have shown that
a better set of flags exists, which can produce more
optimal applications. This validates our second
hypothesis, giving results in line with much previous
work.
The third hypothesis stated that it was possible to

efficiently search the optimisation space to gain infor-
mation about the effectiveness of each optimisation. To
perform this we leveraged fractional factorial designs,
allowing us to test each optimisation in a greatly re-
duced number of runs. This method allowed us to ex-
plore complex effects seen on the Cortex-A8, where the
SIMD unit helped achieve lower energy consumption.
The fourth hypothesis of there being no optimisation

which was effective for all benchmarks and platforms
was evaluated using fractional factorial designs. We
were able to extract the most effective optimisations
for each benchmark and platform pair and these
results showed that there was no single optimisation
that was universally effective. Further analysis of
adding and subtracting individual flags showed that
the optimisation space is chaotic, with optimisations
interacting in unpredictable ways.
The compiler writer can use these results and the

fractional factorial design method to evaluate potential
optimisation passes, ensuring that they perform well
in a variety of configurations. Until a method for
resolving the interactions between optimisations is
found, it is envisioned that the developer could use this
technique to eliminate optimisations that are not having
a positive effect on their application. This will speed up
compilation time as well as potentially improving the
performance of their application.

ACKNOWLEDGEMENTS

This study was funded by Embecosm. The original
research proposal was a result of the Energy Aware
COmputing (EACO) workshops at the University
of Bristol, sponsored by the Institute for Advanced
Studies. The first author was partly sponsored by
EPSRC’s Doctoral Training Account EP/K502996/1.

APPENDIX A. HARDWARE SETUP

All the measurements were taken using the INA219
power monitoring IC [46], which provides power,
current and voltage outputs.

The Cortex-M0 and Cortex-M3 boards both have
a single measurement point, recording the power
consumed by the whole microprocessor. For the
BeagleBone there are three available measurement
points: the Cortex-A8 core (including caches), on-
chip peripherals (power management, bus controllers)
and the external SDRAM memory IC. This allows the
effect of the compiler optimisations on the memory
to be recorded. Adapteva’s Epiphany board has two
measurement points: the core power consumption and
IO power consumption, whereas the XMOS board’s
measurement point gathers power consumption data for
the core of the processor.
The hardware measurements have several sources of

error. The most apparent errors are variations in the
timing: the INA219 is sampled at intervals of 1 ms
and the power measurement integrated over this. Small
inaccuracies occur from jitter in this interval. The ADC
in the INA219 also fluctuated by ±30 µV, however this
was close to the noise floor of the measurements, so had
no significant effect on the results.

REFERENCES

[1] Carroll, A. and Heiser, G. (2010) An analysis of power
consumption in a smartphone. Proc. USENIX, Boston,
MA, USA, 22–25 June, pp. 21–21. USENIX Association
Berkeley, CA, USA.

[2] Lotfi-kamran, P., Grot, B., Ferdman, M., Volos, S.,
and Kocberber, O. (2012) Scale-Out Processors. Int.
Symp. Computer Architecture 12, Portland, Oregon,
9–13 June, pp. 500–511. IEEE Computer Society,
Washington, DC, USA.

[3] Hollis, S. J., Jackson, C., Bogdan, P., and Marculescu,
R. (2012) Exploiting Emergence in On-chip Intercon-
nects. IEEE Transactions on Computers, PP(99), 1–
14.

[4] Pan, Z. and Eigenmann, R. (2006) Fast and effective
orchestration of compiler optimizations for automatic
performance tuning. Int. Symp. Code Generation and
Optimization 06, New York, USA, 26–29 March, pp.
319–332. IEEE Computer Society, Washington, DC,
USA.

[5] Haneda, M., Knijnenburg, P. M. W., and Wijshoff,
H. A. G. (2005) Automatic selection of compiler
options using non-parametric inferential statistics.
Proc. Int. Conf. Parallel Architectures and Compilation
Techniques, St. Louis, USA, 17–21 September, pp. 123–
132. IEEE Computer Society, Washington, DC, USA.

[6] Lin, S. C., Chang, C. K., and Lin, N. W. (2008)
Automatic selection of GCC optimization options using
a gene weighted genetic algorithm. Proc. Computer
Systems Architecture Conference, Hsinchu, Taiwan, 4–6
August, pp. 1–8. IEEE Computer Society, Washington,
DC, USA.

[7] Kisuki, T., Knijnenburg, P. M. W., O’Boyle, M.
F. P., Bodin, F. and Wijshoff, H. A. G. (1999) A
feasibility study in iterative compilation. Int. Symp.
High Performance Computing, Kyoto, Japan, 26–28
May, pp. 121–132. Springer Berlin Heidelberg.

???, Vol. ??, No. ??, ????

Identifying Compiler Options to Minimise Energy Consumption for Embedded Platforms 13

[8] Purini, S. and Jain, L. (2013) Automatic selection
of compiler options using non-parametric inferential
statistics. Transactions on Architecture and Code
Optimization, 9, 1–23. ACM, New York, USA.

[9] Seng, J. S. and Tullsen, D. M. (2003) The effect
of compiler optimizations on pentium 4 power
consumption. Proc. Workshop on Interaction between
Compilers and Computer Architectures, Anaheim,
CA, USA, 8 Feb, pp. 51. IEEE Computer Society,
Washington, DC, USA.

[10] Ibrahim, M. E. A., Rupp, M. and Habib, S. E.-D. (2009)
Compiler-based optimizations impact on embedded
software power consumption Workshop on Circuits and
Systems and TAISA Conference, Toulouse, France, 28
June – 1 July, pp. 1–4. IEEE.

[11] Valluri, M. and John, L. (2001). Is compiling for
performance == compiling for power?

[12] Brooks, D., Tiwari, V., and Martonosi, M. (2000)
Wattch: a framework for architectural-level power
analysis and optimizations. Int. Symp. Computer
Architecture, Vancouver, BC, Canada, 14 June, pp. 83–
94. IEEE Computer Society, Washington, DC, USA.

[13] Ayala, J. and López-Vallejo, M. (2004) Improving
register file banking with a power-aware unroller. Proc.
PARC Pisa, Italy. 15–20.

[14] Zhu, Y., Magklis, G., and Scott, M. (2004) The
energy impact of aggressive loop fusion. Proc. Int. Conf.
Parallel Architectures and Compilation Techniques.
Antibes Juan-les-Pins, France, 29 Sept – 3 Oct, pp.
153–164. IEEE Computer Society, Washington, DC,
USA.

[15] Kim, B., Cho, Y., and Hong, J. (2012) An Efficient
Function Inlining Scheme for Resource-Constrained
Embedded Systems. Journal of Information Science
and Engineering, 28, 859–874.

[16] Toburen, M., Conte, T., and Reilly, M. (1998)
Instruction scheduling for low power dissipation in
high performance microprocessors. Proc. Power Driven
Microarchitecture Workshop, Barcelona, Spain, 28
June, pp. 14–19.

[17] Ye, W., Vijaykrishnan, N., Kandemir, M., and Irwin,
M. J. (2000) The design and use of simplepower: a
cycle-accurate energy estimation tool. Proc. Design
Automation Conference, Los Angeles, California, USA,
5–9 June, pp. 340–345. ACM.

[18] Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel,
P. (2001) An accurate and fine grain instruction-
level energy model supporting software optimizations.
Proc. PATMOS, Yverdon-Les-Bains, Switzerland, 26–
28 Sept.

[19] Qu, G., Kawabe, N., Usami, K., and Potkonjak, M.
(2000) Function-level power estimation methodology
for microprocessors. Proc. Design Automation Confer-
ence, Los Angeles, CA, USA, 5–9 June, pp. 810–813.
ACM.

[20] Blume, H., Becker, D., Rotenberg, L., Botteck, M.,
Brakensiek, J., and Noll, T. (2007) Hybrid functional-
and instruction-level power modeling for embedded
and heterogeneous processor architectures. Journal of
Systems Architecture, 53, 689–702.

[21] Tiwari, V., Malik, S., and Wolfe, A. (1994) Compilation
techniques for low energy: an overview. IEEE Symp.

Low Power Electronics, San Diego, CA, USA, 10–12
Oct, pp. 38 –39. IEEE Computer Society, Washington,
DC, USA.

[22] Seth, A., Keskar, R. B., and Venugopal, R. (2001)
Algorithms for energy optimization using processor
instructions. Proc. Int. Conf. Compilers, Architecture,
and Synthesis for Embedded Systems, Atlanta, Georgia,
USA, pp. 195–202. ACM.

[23] Ibrahim, M. E. A., Rupp, M., and Fahmy, H. A. H.
(2009) Code transformations and SIMD impact on
embedded software energy/power consumption. Proc.
Int. Conf. Computer Engineering & Systems, Cairo,
Egypt, 14–16 Dec, pp. 27–32. IEEE Computer Society,
Washington, DC, USA.

[24] Parikh, A., Kandemir, M., Vijaykrishnan, N., and
Irwin, M. (2000) Instruction scheduling based on energy
and performance constraints. Proc. IEEE Computer
Society Workshop on VLSI, Orlando, FL, USA, pp. 37–
42. IEEE Computer Society, Washington, DC, USA.

[25] Chakrapani, L. N. and et al. (2001) The emerging power
crisis in embedded processors: What can a (poor)
compiler do? Proc. Int. Conf. Compilers, Architecture,
and Synthesis for Embedded Systems, Atlanta, Georgia,
USA, pp. 176–180. ACM.

[26] Steinke, S., Wehmeyer, L. and Marwedel, P. (2002)
Assigning program and data objects to scratchpad for
energy reduction. Proc. Design Automation and Test in
Europe, Paris, France, 4–8 March, pp. 409–415. IEEE.

[27] Cao, Y. and Yasuura, H. (2001) A system-level
energy minimization approach using datapath width
optimization. Proc. Int. Symp. Low Power Electronics
and Design, California, USA, 6–7 August, pp. 231–237.
IEEE.

[28] Gheorghita, S. V., Corporaal, H., and Basten, T. (2005)
Iterative compilation for energy reduction. J. Embedded
Computing, 1, 509–520.

[29] Almagor, L., Cooper, K. D., and Grosul, A. (2004)
Finding effective compilation sequences. Proc. ACM
Conf. Languages, Compilers, and Tools for Embedded
Systems, Washington, DC, USA, 11–13 June, pp. 231–
239. ACM.

[30] Lokuciejewski, P., Plazar, S., Falk, H., Marwedel, P.
and Thiele, L. (2011) Approximating Pareto optimal
compiler optimization sequences — a trade-off between
WCET, ACET and code size. Software — Practice and
Experience, 41, 1437–1458.

[31] George E. P. Box, J. S. H., William G. Hunter
(1978) Statistics for Experimenters: An Introduction
to Design, Data Analysis, and Model Building. John
Wiley & Sons, New York.

[32] Chow, K. and Wu, Y. (1999) Feedback-directed se-
lection and characterization of compiler optimizations.
Workshop on Feedback Directed Optimization, Austin,
Texas, USA, 1 Dec.

[33] Haneda, M. Knijnenburg, P. M. W. and Wijshoff, H.
A. G. (2005) Optimizing General Purpose Compiler
Optimization. Proc. 2nd Conf. Computing Frontiers,
Ischia, Italy, 4–6 May, pp. 180–188. ACM.

[34] Patyk, T., Hannula, H., Kellomaki, P., and Takala,
J. (2009) Energy consumption reduction by automatic
selection of compiler options. Proc. Int. Symp. Signals,
Circuits and Systems, Iasi, Romania, 9–10 July, pp. 1–
4. IEEE Computer Society, Washington, DC, USA.

???, Vol. ??, No. ??, ????

14 J. Pallister and S. Hollis and J. Bennett

[35] Fursin, G., Kashnikov, Y., and Memon, A. W. (2011)
Milepost GCC: machine learning enabled self-tuning
compiler. Int. J. Parallel Programming, 39, 296–327.

[36] Pallister, J., Hollis, S. and Bennett, J. (2013)
BEEBS: Open benchmarks for energy measurements
on embedded platforms. [Preprint] Available from:
http://www.cs.bris.ac.uk/Research/Micro/beebs.jsp
[Accessed 23rd August 2013].

[37] Guthaus, M. R., Ringenberg, J. S., Ernst, D.,
Austin, T. M., Mudge, T., and Brown, R. B.
(2001) Mibench: A free, commercially representative
embedded benchmark suite. Proc. IEEE Workshop on
Workload Characterization, Washington, DC, USA, pp.
3–14. IEEE Computer Society, Washington, DC, USA.

[38] Gustafsson, J., Betts, A., Ermedahl, A., and Lisper, B.
(2010) The mälardalen wcet benchmarks - past, present
and future. Proc. 10th Int. Workshop on Worst-Case
Execution Time Analysis, Brussels, Belgium, 6 July, pp.
137–147.

[39] Hennessy, J. L. and Patterson, D. A. (2012) Computer
Architecture: A Quantitative Approach, 5th edition.
Morgan Kaufmann, MA, USA.

[40] Free Software Foundation, GCC, the GNU Com-
piler Collection, http://gnu.gcc.org/, (Accessed
2013/03/20).

[41] Yiu, J. (2010) The Definitive Guide to the ARM Cortex-
M3, 2nd edition. Newnes, MA, USA.

[42] University of Illinois. The LLVM Compiler Infrastruc-
ture, http://llvm.org/, (Accessed 2013/03/20).

[43] Free Software Foundation, The R Project for Statisti-
cal Computing, http://www.r-project.org/, (Accessed
2013/03/20).

[44] Groemping, U. and Groemping, M. U. (2012). FrF2:
Fractional Factorial designs with 2-level factors.

[45] Kulkarni, Prasad A., Whalley, David B., Tyson, Gary
S. and Davidson, Jack W. (2007) Evaluating heuristic
optimization phase order search algorithms. Int. Symp.
Code Generation and Optimization, California, USA,
11–14 March, pp. 157–169. IEEE.

[46] Texas Instruments. (2011) INA219: Current / Power
Monitor with I2CTM Interface. Texas Instruments,
Dallas, Texas, USA.

???, Vol. ??, No. ??, ????

http://www.cs.bris.ac.uk/Research/Micro/beebs.jsp

	1 Introduction
	2 Overview of this Work
	3 Related Work
	3.1 Compilers & Energy
	3.2 Optimisations Targeting Energy
	3.3 Optimisation Choice

	4 Approach
	4.1 A New Benchmark Set
	4.2 Compiler Flags

	5 Time and Energy
	6 Optimisation Potential
	7 Fractional Factorial Design
	7.1 FFD Results
	7.2 Efficient SIMD Units

	8 The Universality of Flags
	8.1 Optimisation Chaos

	9 What does this mean for the application developer?
	10 What does this mean for the compiler writer?
	11 Conclusion
	Appendix A Hardware Setup

