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No Topic 

1. Number systems 
2. Fixed point (FXP) addition: theory 
3. FXP adders:  basic implementations, speed-up techniques  
4. SD number system 
5. FXP multiplication: basics 
6. FXP multiplication: speed-up techniques 
7. FXP multiplication: implementations 
8. FXP division: basics, speed-up techniques 

9. FXP division: speed-up techniques, implementations 

10. Floating point numbers: basics 
11. Floating point numbers: rounding  

12. Arithmetic Optimization Techniques 
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MULTIPLIER IMPLEMENTATIONS 
 
 Multiplication involves two operations 

 
1. Generation of partial products  
2. Accumulation of partial products 

 
 Two ways to speed up multiplication 

 
1. Reduce the number of partial products (previous lecture) 
2. Accelerate accumulation of partial products (this lecture) 
 

 Classification of high-speed multipliers 
 
1. Sequential multipliers: generate the partial products sequentially and add each 

newly generated product to the previously accumulated partial product 
2. Parallel multipliers: generate all partial products in parallel and then use a fast multi-

operand adder for their accumulation 
3. Cellular array multipliers: made up of an array of identical cells that generate new 

partial products and accumulate them simultaneously, no separate circuits for partial 
product generation and their accumulation 



TIE-51106 Computer Arithmetic 20.08.2014                   3  

 

1. SEQUENTIAL MULTIPLIERS 
 

1.1. Sequential multiplier for serial 1-bit scanning 
 

 
 

 
 Partial product and multiple of A are 

added up bit-serially 
     each accumulation takes n cycles 
     multiplier bit is held unchanged   
         during this time 
 
PPH = MSBs of partial product 
PPL = LSBs of partial product 
 
 

 
 Serial multiplication requires n2 cycles for result 
 
 Suitable for all number systems (Sam, 1’s, 2’s, unsigned) 
 
 Simple implementation, low-cost 
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EXAMPLE Multiply A = 1012 = 510 and B = 011 = 310 using serial multiplier 
 
cycle A B ci X y co s PPH PPL  

 
 
 
 
 
 

 
 
 
 
 
 
 
Result: 0011112 = 1510 

1. 101 011 0 1 0 0 1 000 --- 
        100  
2. 110 011 0 0 0 0 0   
        010  
3. 011 011 0 1 0 0 1   
        101  
Shift partial product  010 1-- 
4. 101 101 0 1 0 0 1   
        101  
5. 110 101 0 0 1 0 1   
        110  
6. 011 101 0 1 0 0 1   
        111  
Shift second partial product  011 11- 
7. 101 110 0 0 1 0 1   
        101  
8. 110 110 0 0 1 0 1   
        110  
9. 011 110 0 0 0 0 0   
        011  
Shift last partial product  001 111 
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1.2. Serial-parallel multiplier (1-bit scanning) 
 

  2a  1a  0a  
  2b  1b  0b  
  2 0a b  1 0a b  0 0a b  
 2 1a b  1 1a b  0 1a b   

2 2a b  1 2a b  0 2a b    

2 2a b  2 1a b + 1 2a b  2 0a b + 1 1a b + 0 2a b 1 0a b + 0 1a b 0 0a b  
 

Cycle Stage I Stage II Stage III 

 

1 0 0a b  0 0a b  0 0a b  
2 1 0a b  1 0a b + 0 1a b 1 0 0 1a b a b  
3 2 0a b  2 0a b + 1 1a b 2 0 1 1 0 2a b a b a b 
4 0 2 1a b  2 1 1 2a b a b  
5 0 0 2 2a b  

 
 Note: aibj is called a summand  
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1.3 Sequential multiplier for parallel 1 –bit scanning 
 
 Generic multiplier block diagram: 
 

B
multiplier

A
multiplicand

multiple
select

adder

partial
product
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 Basic implementation for right-shift method 
 

 Summands are generated parallel in each cycle 
 One cycle: add multiple of A into partial product 
 n cycles needed to complete operation 
 n+1 –bit adder required for intermediate overflows 

 

 
  

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0



TIE-51106 Computer Arithmetic 20.08.2014                   8  

 

EXAMPLE 
 Reg AC Reg B A = 00101  Note how the multiplier bits are shifted out 

and replaced by the LSB part of the partial 
product (and final result) 

 
 The example applies to unsigned numbers 

multiplication: note the zeros shifted in to 
the AC-register 

 
 More complicated with signed numbers! 

 
 

 

(0)p  00000 01011  
add A 00101   
2 (1)p  00101 01011  
shift 00010 10101  1 omit 1 
add A 00101   
2 (2)p  00111 10101  
shift 00011 11010  1 omit 1 
add zero 00000   
2 (3)p  00011 11010  
shift 00001 11101  0 omit 0 
add A 00101   
2 (4)p  00110 11101  
shift 00011 01110  1 omit 1 
add zero 00000   
2 (5)p  00011 01110  
shift 00001 10111  0 omit 0 
    

Final result 00001 10111  

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0



TIE-51106 Computer Arithmetic 20.08.2014                   9  

 

1.4 Sequential multipliers for m –bit scanning and m –bit recoding 
 
 Scanning and recoding differ in multiple count, type and shift length 
 
 Both require   

1. Multiple generation 
2. Selection of proper multiple 
3. Accumulation of partial product (= addition of multiple) 

 
 Implementations differ in how above are arranged and / or combined 
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EXAMPLE  
  
2-bit non-overlapping scanning (radix-4 multiplication) 
 
 Multiples (0, A, 2A, and 3A) are 

generated before operation 
 
 Depending on multiplier bits, 

one of possible multiplies is 
added into partial product per 
cycle 

 
 

 

 

0a 2a
3a

AC
Multiplier

2-bit shifts

00    01    10    11
Mux

a
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EXAMPLE 
 
2-bit non-overlapping scanning (radix-4 multiplication) 
 
 
 Multiples (0, A, 2A, 3A)  
 Generated on the fly 
 Selected by multiplier bits 
 

 Overflow / sign extension handled 
as described earlier for 1’s, 2’s, 
SaM numbers 

 
 
 

CSA
adder

multiplier
register (B)2A

A

b1b0

CPA
adder

AND AND
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 One multiple is added in each cycle 
 

cycle 1
cycle 2
cycle 3

b0b1b2b3b4b5. . .

. . .
M1

M2
M3  

 
 Note:  M1 = 0, A, 2A or 3A depending on 1 0b b  

  M2 = 0, A, 2A or 3A depending on 3 2b b  
 

 More than one multiple can be added during one cycle, because multiples can be 
obtained independently 
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EXAMPLE 
  2-bit look-behind recoding 

b-1=0b0b1b2b3b4b5. . .

. . .

cycle 1
cycle 2
cycle 3

M1
M2

M3  
 One multiple is added in each cycle 

Mi

 
 

 More than one multiple can be added during one cycle, because multiples can be 
obtained independently  
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2. PARALLEL MULTIPLIERS 
  

2.1. Basic method 
 
   0 1 0 1  
   0 0 1 0  

0 0 0 0 0 0 0  
0 0 0 1 0 1 0   
0 0 0 0 0 0 0    
0 0 0 0 0 0 0    
0 0 0 1 0 1 0  M4 M3 M2 M1 
            
        4-input 8-bit 

adder 
 

  
          p 
 Note sign extension to multiples 
 
 Adder will be large and wasteful because of sign extended bits 
 
 For parallel addition in simpler hardware, summands may be added column-wise using 

(m, n)-counters (CSA adders) 
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2.2. Parallel column-wise addition of summands 
 
 Consider example of multiplication of A and B 
 
  a5  a4  a3  a2  a1  a0  A 
     x b5  b4  b3  b2  b1  b0  B 
 
 Using dot-notation, the summand matrix is following (consists of 36 summands): 
 

10 9 8 7 6 5 4 3 2 1 0   bit position 

            M1 
            M2 
            M3 
            M4 
            M5 
            M6 

  
 In the dot notation, the value of the summand is not shown, but the order (weight) is 

highlighted  
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 M1, M2, …M6 can be added using e.g. six-input Wallace tree adder: 
 

 
 Wallace tree  
 The bits are combined at the earliest 

opportunity  
 Fastest possible implementation 

 
 Dadda tree 
 The bits are combined at the latest 

opportunity 
 The CSA levels are minimized 
 The tree is much simpler than Wallace 
 Speed is slower than with Wallace 

 

 

CSA CSA

CSA

CSA

CSA

M3 M2 M1M6 M5 M4

CPA
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 (3,2)-counters can be saved, if the original summand matrix is reorganized as follows: 
 

10 9 8 7 6 5 4 3 2 1 0

          
           
           
           
           
           

  
 Columns are added up in 3 carry-save stages followed by CPA merging    4 levels of 

adders 
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 Level 1 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0    

              
             = (2,2)-counter 
              
              
           = (3,2)-counter 
              

 
 Results of level 1 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0    

              
              
              
           = c,s 
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 Level 2 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0

          
           
           
           
           
           

 
 Level 3 CSA addition: 

11 10 9 8 7 6 5 4 3 2 1 0

           
            
            
            
            
            

 
 After that, CPA (Carry Propagate Adder) is used to merge carry and sum bits (the 

remaining two rows)   
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2.3. Combining techniques of sequential and parallel multipliers 
 
 3 multiples addition / cycle 

MiMi+1Mi+2

 
 
 First cycle:  M3, M2, M1 added to partial product 
 
 Second cycle:  M6, M5, M4 added to partial product, etc  
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 EXAMPLE: parallel addition of 6 multiples into partial product 
 

 6 multiples are generated e.g. out of 
 
a) 12 multiplier bits in 2-bit non-overlapped scan 
     -> each multiple may be 0,A,2A,3A 
 
b) 13 multiplier bits in 2-bit look-ahead recoding 
     -> each multiple may be 0,±2A, ±4A 
 
c) 13 multiplier bits in 2-bit look-behind recoding 
     -> each multiple may be 0, ±A, ±2A 
 
d) 19 multiplier bits in 3-bit look-behind recoding 
     -> each multiple may be 0, ±A, ±2A, ±3A, ±4A 
 
e) 6 multiplier bits in 1-bit scanning 

            -> each multiple may be 0,A 
 

 CSA width must be changed if more bits are 
scanned/recoded 
 

 Amount of right shift depends on amount of 
multiplier bits scanned in parallel 
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 Trade-off between complexity, speed and area 
 

Sequential    Combination   Parallel 
 

Basic 
binary

Adder

Adder

  Next
multiple

Partial  product

...

Several
multiples

Adder

. . .
All multiples

Small CSA
tree Full CSA

tree

High-radix
or

partial tree
Full
treeSpeed up Economize

Partial product
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3. CELLULAR ARRAY MULTIPLIERS 
 
 Main functional blocks 
 Summand (aibj) generation unit 
 Summand summation unit 

 
 In actual implementations, the blocks are 

merged 
 
 Array multipliers are suitable for pipelining

 Typically best performance among 
multipliers 

 
 Reasonable implementations 
 Unsigned 
 Indirect 1’s complement and sign-

magnitude 
 Direct 2’s complement multiplication  

 
 Array multiplier performs column-wise 

addition of summands 
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 Carry-out from each (whole) column can be generated partially and merged into the 
next column 

 
EXAMPLE 
 

row col 3 2 1 0 col 4 3 3 2 2 1 1 0 
1    1 0 1      1  0 
2   0 1 1 2    0  1  1 
3  0 1 1 0     0 1 0 0 1 
4  0 0 1           
si  0 1 0 1     1  0  1 
ci+1..i  0 0 10 0 3  0  1  1  0 
        0 1 0 0 1 0 1 
               
        1  0  1   
      4  0  0  1   
       0 1 0 0 1 0   
               
       0 1 0 0 1 0 0 1 
       c s c s c s c s 
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3.1 Braun multiplier 
 Above merging is 

directly applied in 
Braun multiplier 

 
 Suitable for 

unsigned and SaM 
numbers 
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3.2 Indirect cellular array signed number multiplication 
 
 Operation 
 Signed numbers are 

converted to 
unsigned  

 Multiplication is 
performed 

 Result is converted if 
needed 

 
 Not reasonable for 2’s 

complement numbers 
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3.3 Direct 2’s complement array multiplication 
 
 Recall corrections required in general case 
 
 For array multiplication, corrections can be included to carry and sum bits merging 

during summand additions 
 
 Based on 2’s complement number representation 
 

1 2
01

n in
iv n iX x r x r 
     

 
 Negative operands causes negative summands 
 
 MSB digit is considered negative 
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EXAMPLE 
 
 Multiplication of 

+13 and -5 
 

 Each single 
summand can be 
negative or positive  
 

 Negative 
summands are 
marked with () 

 
 In the last line of 

summands, the 
complement of A is 
added: 
corresponds to the 
correction made in 
“cumulating partial 
products” 
multiplication 
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 Previous example implies that addition of 
summands requires also negatively 
weighted inputs for adders 

 
 Generalized full adder can be used for 

additions 
 
 Equations: 
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3.4 Pezaris multiplier 
 
 Direct application of generalized full adders for direct 2’s complement array 

multiplication leads to Pezaris multiplier 
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 Pezaris multiplier has one large section which contains three types of full adders  
 

 Improvement can be made by rearranging the summand matrix elements (without 
affecting column-wise additions) 

 
 Tri-section multiplier has three different sections, each section uses only one type of 

adder 
 3 FA types required 

 
 Bi-section multiplier uses only 2 types of FA 
 First section adds all positive summands 
 Second section adds all negative summands 
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3.5 Baugh-Wooley’s multiplier 
 

 In all above 
cases, direct 
subtraction is 
performed (not 
addition of 
complement) 
 

 Only normal FA:s 
can be used, if 
summands are 
arranged 
according to two’s 
complement 
operation 
 Baugh-

Wooley’s 
multiplier 
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3.6  Recoded multiplier cellular array multiplication 
 
 Partial product should 

be accumulated or 
subtracted depending 
on recoded multiplier 
bits 

 
 For string of ones or 

zeros, only shifting is 
performed: unit should 
also be able to shift 
current row of 
summands 

 
 Implementation 

requires controlled 
add-subtract-shift 
(CASS) cell  
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 3x3 recoded cellular array multiplier 
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4. MODULAR MULTIPLICATION 
 
 Large multipliers can be constructed from smaller 
 
EXAMPLE 
 
Consider multiplication of A = 1234 and B = 5678 performing addition of several multiples 
simultaneously (this is the same principle as in previous carry-save adder based 
multipliers)  
 

Multiplier sliced in two Multiplier sliced in four 
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EXAMPLE 
  
Construct 2 2n n  bit multiplier using n-bit multipliers 
 
 Let 2 1 0,...,nA a a   
  2 1 0,...,nB b b  
  LA , LB be the least significant parts of operands (n-bits) 
  HA , HB  be the most significant parts of operands 
 
 Then 

  2

2

( 2 )( 2 )

2 2 2

2 ( )2

n n
H L H L

n n n
H H H L L H L L

n n
H H H L L H L L

AB A A B B

A B A B A B A B

A B A B A B A B

  

   

   

 

 
  



TIE-51106 Computer Arithmetic 20.08.2014                   38  

 

 Block diagram 
 

22 ( )2n n
H H H L L H L LAB A B A B A B A B   
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 Subproduct columns are added up for final result 
 
 Max 3-input adders required for final stage and  4 multipliers to produce subproducts 
 
 Each subproduct can be generated by some multiplier, e.g. cellular array multiplier 

(Braun multiplier may be called Non-additive Multiplier Module NMM) 
 
 2 2n n  bit multiplier using 22 = 4 n-bit multipliers can be extended to any power of two 
 
 kn kn  bit multiplier uses 2k  n-bit multipliers 
 
 Partial products can be arranged as follows (Wallace) 
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5. LOOK-UP TABLE MULTIPLICATION 
 
 Very fast, if large memory is available 
 
 In multiplication, the table size grows quite rapidly with the width of the operands 
 
EXAMPLE 
  
  8x8 bit multiplier requires 64k x 16bit memory 
 
 Practical multiplier implementation based on lookup table idea combines a number of 

small tables and small adders 
 
 Multiplicand and/or multiplier is split 
 Lookup table is used to obtain the summands 
 Tree of adders is used to add the summands 
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EXAMPLE 
 
Consider multiplication of A = 1234 and B = 5678 (A and B sliced in two) 
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EXAMPLE 
 
Implementation of 16x16 bit multiplier with four 8x8 bit look-up table multipliers and adders  
 

MD = multiplicand 
MR = multiplier 
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6. IMPLEMENTING MULTIPLICATION ON FPGA  
 
 Two possibilities 

 
 Use hard macros for multiplication 
 Implement LUT-based multipliers 

 
6.1 Hard macros for multiplication 

 
 Many FPGA vendors incorporate special hard-wired multiplier blocks on FPGA 

 
 Increase processing speed 
 Reduce area 

 
 Features of hard macros differ between FPGA vendors, vendor-specific examples of 

hard macros for multiplication 
 

 Xilinx: Embedded 18x18 bit signed multipliers 
 Altera: Embedded DSP blocks 
 Lattice: Booth multiplication logic 

 
 Recommended to use 
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6.2 LUT-based multipliers 
 
 LUT-based multipliers are inherently slow 

 
 Large number of programmable logic blocks are connected together 

 
 Sometimes LUT-based multiplication may still be needed 
 
 Design incorporates more multipliers than FPGA provides 
 Hard macro does not support the desired special multiplication 

 


