
TIE-51106 Computer Arithmetic 20.08.2014 1

No Topic

1. Number systems
2. Fixed point (FXP) addition: theory
3. FXP adders: basic implementations, speed-up techniques
4. SD number system
5. FXP multiplication: basics
6. FXP multiplication: speed-up techniques
7. FXP multiplication: implementations
8. FXP division: basics, speed-up techniques

9. FXP division: speed-up techniques, implementations

10. Floating point numbers: basics
11. Floating point numbers: rounding

12. Arithmetic Optimization Techniques

TIE-51106 Computer Arithmetic 20.08.2014 2

MULTIPLIER IMPLEMENTATIONS

 Multiplication involves two operations

1. Generation of partial products
2. Accumulation of partial products

 Two ways to speed up multiplication

1. Reduce the number of partial products (previous lecture)
2. Accelerate accumulation of partial products (this lecture)

 Classification of high-speed multipliers

1. Sequential multipliers: generate the partial products sequentially and add each

newly generated product to the previously accumulated partial product
2. Parallel multipliers: generate all partial products in parallel and then use a fast multi-

operand adder for their accumulation
3. Cellular array multipliers: made up of an array of identical cells that generate new

partial products and accumulate them simultaneously, no separate circuits for partial
product generation and their accumulation

TIE-51106 Computer Arithmetic 20.08.2014 3

1. SEQUENTIAL MULTIPLIERS

1.1. Sequential multiplier for serial 1-bit scanning

 Partial product and multiple of A are

added up bit-serially
 each accumulation takes n cycles
 multiplier bit is held unchanged
 during this time

PPH = MSBs of partial product
PPL = LSBs of partial product

 Serial multiplication requires n2 cycles for result

 Suitable for all number systems (Sam, 1’s, 2’s, unsigned)

 Simple implementation, low-cost

TIE-51106 Computer Arithmetic 20.08.2014 4

EXAMPLE Multiply A = 1012 = 510 and B = 011 = 310 using serial multiplier

cycle A B ci X y co s PPH PPL

Result: 0011112 = 1510

1. 101 011 0 1 0 0 1 000 ---
 100
2. 110 011 0 0 0 0 0
 010
3. 011 011 0 1 0 0 1
 101
Shift partial product 010 1--
4. 101 101 0 1 0 0 1
 101
5. 110 101 0 0 1 0 1
 110
6. 011 101 0 1 0 0 1
 111
Shift second partial product 011 11-
7. 101 110 0 0 1 0 1
 101
8. 110 110 0 0 1 0 1
 110
9. 011 110 0 0 0 0 0
 011
Shift last partial product 001 111

TIE-51106 Computer Arithmetic 20.08.2014 5

1.2. Serial-parallel multiplier (1-bit scanning)

 2a 1a 0a
 2b 1b 0b
 2 0a b 1 0a b 0 0a b
 2 1a b 1 1a b 0 1a b

2 2a b 1 2a b 0 2a b

2 2a b 2 1a b + 1 2a b 2 0a b + 1 1a b + 0 2a b 1 0a b + 0 1a b 0 0a b

Cycle Stage I Stage II Stage III

1 0 0a b 0 0a b 0 0a b
2 1 0a b 1 0a b + 0 1a b 1 0 0 1a b a b
3 2 0a b 2 0a b + 1 1a b 2 0 1 1 0 2a b a b a b
4 0 2 1a b 2 1 1 2a b a b
5 0 0 2 2a b

 Note: aibj is called a summand

Stage I

FA

coci

y
x

s
FA

coci

y
x

s

FFFF

FF FF

a2, a1, a0

b0 b1 b2

p0, p1, p2

Stage II Stage IIIStage I

FA

coci

y
x

s
FA

coci

y
x

s

FFFFFFFF

FFFF FFFF

a2, a1, a0

b0 b1 b2

p0, p1, p2

Stage II Stage III

TIE-51106 Computer Arithmetic 20.08.2014 6

1.3 Sequential multiplier for parallel 1 –bit scanning

 Generic multiplier block diagram:

B
multiplier

A
multiplicand

multiple
select

adder

partial
product

TIE-51106 Computer Arithmetic 20.08.2014 7

 Basic implementation for right-shift method

 Summands are generated parallel in each cycle
 One cycle: add multiple of A into partial product
 n cycles needed to complete operation
 n+1 –bit adder required for intermediate overflows

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0

TIE-51106 Computer Arithmetic 20.08.2014 8

EXAMPLE
 Reg AC Reg B A = 00101 Note how the multiplier bits are shifted out

and replaced by the LSB part of the partial
product (and final result)

 The example applies to unsigned numbers

multiplication: note the zeros shifted in to
the AC-register

 More complicated with signed numbers!

(0)p 00000 01011
add A 00101
2 (1)p 00101 01011
shift 00010 10101 1 omit 1
add A 00101
2 (2)p 00111 10101
shift 00011 11010 1 omit 1
add zero 00000
2 (3)p 00011 11010
shift 00001 11101 0 omit 0
add A 00101
2 (4)p 00110 11101
shift 00011 01110 1 omit 1
add zero 00000
2 (5)p 00011 01110
shift 00001 10111 0 omit 0

Final result 00001 10111

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0

TIE-51106 Computer Arithmetic 20.08.2014 9

1.4 Sequential multipliers for m –bit scanning and m –bit recoding

 Scanning and recoding differ in multiple count, type and shift length

 Both require

1. Multiple generation
2. Selection of proper multiple
3. Accumulation of partial product (= addition of multiple)

 Implementations differ in how above are arranged and / or combined

TIE-51106 Computer Arithmetic 20.08.2014 10

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

 Multiples (0, A, 2A, and 3A) are

generated before operation

 Depending on multiplier bits,

one of possible multiplies is
added into partial product per
cycle

0a 2a
3a

AC
Multiplier

2-bit shifts

00 01 10 11
Mux

a

TIE-51106 Computer Arithmetic 20.08.2014 11

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

 Multiples (0, A, 2A, 3A)
 Generated on the fly
 Selected by multiplier bits

 Overflow / sign extension handled
as described earlier for 1’s, 2’s,
SaM numbers

CSA
adder

multiplier
register (B)2A

A

b1b0

CPA
adder

AND AND

TIE-51106 Computer Arithmetic 20.08.2014 12

 One multiple is added in each cycle

cycle 1
cycle 2
cycle 3

b0b1b2b3b4b5. . .

. . .
M1

M2
M3

 Note: M1 = 0, A, 2A or 3A depending on 1 0b b

 M2 = 0, A, 2A or 3A depending on 3 2b b

 More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014 13

EXAMPLE
 2-bit look-behind recoding

b-1=0b0b1b2b3b4b5. . .

. . .

cycle 1
cycle 2
cycle 3

M1
M2

M3
 One multiple is added in each cycle

Mi

 More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014 14

2. PARALLEL MULTIPLIERS

2.1. Basic method

 0 1 0 1
 0 0 1 0

0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 1 0 M4 M3 M2 M1

 4-input 8-bit

adder

 p
 Note sign extension to multiples

 Adder will be large and wasteful because of sign extended bits

 For parallel addition in simpler hardware, summands may be added column-wise using

(m, n)-counters (CSA adders)

TIE-51106 Computer Arithmetic 20.08.2014 15

2.2. Parallel column-wise addition of summands

 Consider example of multiplication of A and B

 a5 a4 a3 a2 a1 a0 A
 x b5 b4 b3 b2 b1 b0 B

 Using dot-notation, the summand matrix is following (consists of 36 summands):

10 9 8 7 6 5 4 3 2 1 0 bit position

 M1
 M2
 M3
 M4
 M5
 M6

 In the dot notation, the value of the summand is not shown, but the order (weight) is

highlighted

TIE-51106 Computer Arithmetic 20.08.2014 16

 M1, M2, …M6 can be added using e.g. six-input Wallace tree adder:

 Wallace tree
 The bits are combined at the earliest

opportunity
 Fastest possible implementation

 Dadda tree
 The bits are combined at the latest

opportunity
 The CSA levels are minimized
 The tree is much simpler than Wallace
 Speed is slower than with Wallace

CSA CSA

CSA

CSA

CSA

M3 M2 M1M6 M5 M4

CPA

TIE-51106 Computer Arithmetic 20.08.2014 17

 (3,2)-counters can be saved, if the original summand matrix is reorganized as follows:

10 9 8 7 6 5 4 3 2 1 0

 Columns are added up in 3 carry-save stages followed by CPA merging 4 levels of

adders

TIE-51106 Computer Arithmetic 20.08.2014 18

 Level 1 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

 = (2,2)-counter

 = (3,2)-counter

 Results of level 1 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

 = c,s

TIE-51106 Computer Arithmetic 20.08.2014 19

 Level 2 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

 Level 3 CSA addition:

11 10 9 8 7 6 5 4 3 2 1 0

 After that, CPA (Carry Propagate Adder) is used to merge carry and sum bits (the

remaining two rows)

TIE-51106 Computer Arithmetic 20.08.2014 20

2.3. Combining techniques of sequential and parallel multipliers

 3 multiples addition / cycle

MiMi+1Mi+2

 First cycle: M3, M2, M1 added to partial product

 Second cycle: M6, M5, M4 added to partial product, etc

TIE-51106 Computer Arithmetic 20.08.2014 21

 EXAMPLE: parallel addition of 6 multiples into partial product

 6 multiples are generated e.g. out of

a) 12 multiplier bits in 2-bit non-overlapped scan
 -> each multiple may be 0,A,2A,3A

b) 13 multiplier bits in 2-bit look-ahead recoding
 -> each multiple may be 0,±2A, ±4A

c) 13 multiplier bits in 2-bit look-behind recoding
 -> each multiple may be 0, ±A, ±2A

d) 19 multiplier bits in 3-bit look-behind recoding
 -> each multiple may be 0, ±A, ±2A, ±3A, ±4A

e) 6 multiplier bits in 1-bit scanning

 -> each multiple may be 0,A

 CSA width must be changed if more bits are
scanned/recoded

 Amount of right shift depends on amount of
multiplier bits scanned in parallel

TIE-51106 Computer Arithmetic 20.08.2014 22

 Trade-off between complexity, speed and area

Sequential Combination Parallel

Basic
binary

Adder

Adder

 Next
multiple

Partial product

...

Several
multiples

Adder

. . .
All multiples

Small CSA
tree Full CSA

tree

High-radix
or

partial tree
Full
treeSpeed up Economize

Partial product

TIE-51106 Computer Arithmetic 20.08.2014 23

3. CELLULAR ARRAY MULTIPLIERS

 Main functional blocks
 Summand (aibj) generation unit
 Summand summation unit

 In actual implementations, the blocks are

merged

 Array multipliers are suitable for pipelining

 Typically best performance among
multipliers

 Reasonable implementations
 Unsigned
 Indirect 1’s complement and sign-

magnitude
 Direct 2’s complement multiplication

 Array multiplier performs column-wise

addition of summands

TIE-51106 Computer Arithmetic 20.08.2014 24

 Carry-out from each (whole) column can be generated partially and merged into the
next column

EXAMPLE

row col 3 2 1 0 col 4 3 3 2 2 1 1 0
1 1 0 1 1 0
2 0 1 1 2 0 1 1
3 0 1 1 0 0 1 0 0 1
4 0 0 1
si 0 1 0 1 1 0 1
ci+1..i 0 0 10 0 3 0 1 1 0
 0 1 0 0 1 0 1

 1 0 1
 4 0 0 1
 0 1 0 0 1 0

 0 1 0 0 1 0 0 1
 c s c s c s c s

TIE-51106 Computer Arithmetic 20.08.2014 25

3.1 Braun multiplier
 Above merging is

directly applied in
Braun multiplier

 Suitable for

unsigned and SaM
numbers

TIE-51106 Computer Arithmetic 20.08.2014 26

3.2 Indirect cellular array signed number multiplication

 Operation
 Signed numbers are

converted to
unsigned

 Multiplication is
performed

 Result is converted if
needed

 Not reasonable for 2’s

complement numbers

TIE-51106 Computer Arithmetic 20.08.2014 27

3.3 Direct 2’s complement array multiplication

 Recall corrections required in general case

 For array multiplication, corrections can be included to carry and sum bits merging

during summand additions

 Based on 2’s complement number representation

1 2
01

n in
iv n iX x r x r

 Negative operands causes negative summands

 MSB digit is considered negative

TIE-51106 Computer Arithmetic 20.08.2014 28

EXAMPLE

 Multiplication of

+13 and -5

 Each single
summand can be
negative or positive

 Negative
summands are
marked with ()

 In the last line of

summands, the
complement of A is
added:
corresponds to the
correction made in
“cumulating partial
products”
multiplication

TIE-51106 Computer Arithmetic 20.08.2014 29

 Previous example implies that addition of
summands requires also negatively
weighted inputs for adders

 Generalized full adder can be used for

additions

 Equations:

TIE-51106 Computer Arithmetic 20.08.2014 30

3.4 Pezaris multiplier

 Direct application of generalized full adders for direct 2’s complement array

multiplication leads to Pezaris multiplier

TIE-51106 Computer Arithmetic 20.08.2014 31

 Pezaris multiplier has one large section which contains three types of full adders

 Improvement can be made by rearranging the summand matrix elements (without
affecting column-wise additions)

 Tri-section multiplier has three different sections, each section uses only one type of

adder
 3 FA types required

 Bi-section multiplier uses only 2 types of FA
 First section adds all positive summands
 Second section adds all negative summands

TIE-51106 Computer Arithmetic 20.08.2014 32

TIE-51106 Computer Arithmetic 20.08.2014 33

3.5 Baugh-Wooley’s multiplier

 In all above
cases, direct
subtraction is
performed (not
addition of
complement)

 Only normal FA:s
can be used, if
summands are
arranged
according to two’s
complement
operation
 Baugh-

Wooley’s
multiplier

TIE-51106 Computer Arithmetic 20.08.2014 34

3.6 Recoded multiplier cellular array multiplication

 Partial product should

be accumulated or
subtracted depending
on recoded multiplier
bits

 For string of ones or

zeros, only shifting is
performed: unit should
also be able to shift
current row of
summands

 Implementation

requires controlled
add-subtract-shift
(CASS) cell

TIE-51106 Computer Arithmetic 20.08.2014 35

 3x3 recoded cellular array multiplier

TIE-51106 Computer Arithmetic 20.08.2014 36

4. MODULAR MULTIPLICATION

 Large multipliers can be constructed from smaller

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 performing addition of several multiples
simultaneously (this is the same principle as in previous carry-save adder based
multipliers)

Multiplier sliced in two Multiplier sliced in four

TIE-51106 Computer Arithmetic 20.08.2014 37

EXAMPLE

Construct 2 2n n bit multiplier using n-bit multipliers

 Let 2 1 0,...,nA a a
 2 1 0,...,nB b b
 LA , LB be the least significant parts of operands (n-bits)
 HA , HB be the most significant parts of operands

 Then

 2

2

(2)(2)

2 2 2

2 ()2

n n
H L H L

n n n
H H H L L H L L

n n
H H H L L H L L

AB A A B B

A B A B A B A B

A B A B A B A B

TIE-51106 Computer Arithmetic 20.08.2014 38

 Block diagram

22 ()2n n
H H H L L H L LAB A B A B A B A B

TIE-51106 Computer Arithmetic 20.08.2014 39

 Subproduct columns are added up for final result

 Max 3-input adders required for final stage and 4 multipliers to produce subproducts

 Each subproduct can be generated by some multiplier, e.g. cellular array multiplier

(Braun multiplier may be called Non-additive Multiplier Module NMM)

 2 2n n bit multiplier using 22 = 4 n-bit multipliers can be extended to any power of two

 kn kn bit multiplier uses 2k n-bit multipliers

 Partial products can be arranged as follows (Wallace)

TIE-51106 Computer Arithmetic 20.08.2014 40

TIE-51106 Computer Arithmetic 20.08.2014 41

5. LOOK-UP TABLE MULTIPLICATION

 Very fast, if large memory is available

 In multiplication, the table size grows quite rapidly with the width of the operands

EXAMPLE

 8x8 bit multiplier requires 64k x 16bit memory

 Practical multiplier implementation based on lookup table idea combines a number of

small tables and small adders

 Multiplicand and/or multiplier is split
 Lookup table is used to obtain the summands
 Tree of adders is used to add the summands

TIE-51106 Computer Arithmetic 20.08.2014 42

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 (A and B sliced in two)

TIE-51106 Computer Arithmetic 20.08.2014 43

EXAMPLE

Implementation of 16x16 bit multiplier with four 8x8 bit look-up table multipliers and adders

MD = multiplicand
MR = multiplier

TIE-51106 Computer Arithmetic 20.08.2014 44

6. IMPLEMENTING MULTIPLICATION ON FPGA

 Two possibilities

 Use hard macros for multiplication
 Implement LUT-based multipliers

6.1 Hard macros for multiplication

 Many FPGA vendors incorporate special hard-wired multiplier blocks on FPGA

 Increase processing speed
 Reduce area

 Features of hard macros differ between FPGA vendors, vendor-specific examples of

hard macros for multiplication

 Xilinx: Embedded 18x18 bit signed multipliers
 Altera: Embedded DSP blocks
 Lattice: Booth multiplication logic

 Recommended to use

TIE-51106 Computer Arithmetic 20.08.2014 45

6.2 LUT-based multipliers

 LUT-based multipliers are inherently slow

 Large number of programmable logic blocks are connected together

 Sometimes LUT-based multiplication may still be needed

 Design incorporates more multipliers than FPGA provides
 Hard macro does not support the desired special multiplication

