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Chapter 7 Large and Fast: Exploiting Memory Hierarchy

 

From the earliest days of computing, programmers have wanted unlimited
amounts of fast memory. The topics we will look at in this chapter aid program-
mers by creating the illusion of unlimited fast memory. Before we look at how the
illusion is actually created, let’s consider a simple analogy that illustrates the key
principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical
developments in computer hardware. You are sitting at a desk in a library with a
collection of books that you have pulled from the shelves and are examining. You
find that several of the important computers that you need to write about are
described in the books you have, but there is nothing about the EDSAC. There-
fore, you go back to the shelves and look for an additional book. You find a book
on early British computers that covers the EDSAC. Once you have a good selec-
tion of books on the desk in front of you, there is a good probability that many of
the topics you need can be found in them, and you may spend most of your time
just using the books on the desk without going back to the shelves. Having several
books on the desk in front of you saves time compared to having only one book
there and constantly having to go back to the shelves to return it and take out
another. 

The same principle allows us to create the illusion of a large memory that we
can access as fast as a very small memory. Just as you did not need to access all the
books in the library at once with equal probability, a program does not access all
of its code or data at once with equal probability. Otherwise, it would be impossi-
ble to make most memory accesses fast and still have large memory in computers,
just as it would be impossible for you to fit all the library books on your desk and
still find what you wanted quickly. 

This 

 

principle of locality

 

 underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library’s collection. There are
two different types of locality:

 

�

 

Temporal locality

 

 (locality in time): If an item is referenced, it will tend to
be referenced again soon. If you recently brought a book to your desk to
look at, you will probably need to look at it again soon.

 

�

 

Spatial locality

 

 (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when

 

7.1

 

Introduction

 

7.1

temporal locality The princi-
ple stating that if a data location 
is referenced then it will tend to 
be referenced again soon.

spatial locality The locality 
principle stating that if a data 
location is referenced, data loca-
tions with nearby addresses will 
tend to be referenced soon.
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you brought out the book on early English computers to find out about the
EDSAC, you also noticed that there was another book shelved next to it
about early mechanical computers, so you also brought back that book too
and, later on, found something useful in that book. Books on the same topic
are shelved together in the library to increase spatial locality. We’ll see how
spatial locality is used in memory hierarchies a little later in this chapter.

Just as accesses to books on the desk naturally exhibit locality, locality in pro-
grams arises from simple and natural program structures. For example, most pro-
grams contain loops, so instructions and data are likely to be accessed repeatedly,
showing high amounts of temporal locality. Since instructions are normally
accessed sequentially, programs show high spatial locality. Accesses to data also
exhibit a natural spatial locality. For example, accesses to elements of an array or a
record will naturally have high degrees of spatial locality. 

We take advantage of the principle of locality by implementing the memory of
a computer as a 

 

memory hierarchy

 

. A memory hierarchy consists of multiple lev-
els of memory with different speeds and sizes. The faster memories are more
expensive per bit than the slower memories and thus smaller. 

Today, there are three primary technologies used in building memory hierar-
chies. Main memory is implemented from DRAM (dynamic random access
memory), while levels closer to the processor (caches) use SRAM (static random
access memory). DRAM is less costly per bit than SRAM, although it is substan-
tially slower. The price difference arises because DRAM uses significantly less
area per bit of memory, and DRAMs thus have larger capacity for the same
amount of silicon; the speed difference arises from several factors described in
Section B.8 of  

 

Appendix B

 

. The third technology, used to implement the
largest and slowest level in the hierarchy, is magnetic disk. The access time and
price per bit vary widely among these technologies, as the table below shows,
using typical values for 2004:

Because of these differences in cost and access time, it is advantageous to build
memory as a hierarchy of levels. Figure 7.1 shows the faster memory is close to the
processor and the slower, less expensive memory is below it. The goal is to present
the user with as much memory as is available in the cheapest technology, while
providing access at the speed offered by the fastest memory. 

 

Memory technology Typical access time $ per GB in 2004

 

SRAM 0.5–5 ns $4000–$10,000

DRAM 50–70 ns $100–$200

Magnetic disk 5,000,000–20,000,000 ns $0.50–$2

memory hierarchy A struc-
ture that uses multiple levels of 
memories; as the distance from 
the CPU increases, the size of 
the memories and the access 
time both increase.
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Chapter 7 Large and Fast: Exploiting Memory Hierarchy

 

The memory system is organized as a hierarchy: a level closer to the processor
is generally a subset of any level further away, and all the data is stored at the low-
est level. By analogy, the books on your desk form a subset of the library you are
working in, which is in turn a subset of all the libraries on campus. Furthermore,
as we move away from the processor, the levels take progressively longer to access,
just as we might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.
The upper level—the one closer to the processor—is smaller and faster (since it
uses more expensive technology) than the lower level. Figure 7.2 shows that the
minimum unit of information that can be either present or not present in the
two-level hierarchy is called a 

 

block

 

 

 

or a 

 

line

 

; in our library analogy, a block of
information is one book. 

If the data requested by the processor appears in some block in the upper level,
this is called a 

 

hit

 

 (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a

 

miss

 

. The lower level in the hierarchy is then accessed to retrieve the block con-
taining the requested data. (Continuing our analogy, you go from your desk to the
shelves to find the desired book.) The

 

 

 

hit rate

 

, or 

 

hit ratio

 

, is the fraction of mem-
ory accesses found in the upper level; it is often used as a measure of the perfor-

 

FIGURE 7.1 The basic structure of a memory hierarchy. 

 

By implementing the memory system
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as if it were all built from the fastest memory. 

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)
Current

technology

Highest

Lowest

SRAM

DRAM

Magnetic disk

CPU

Memory

Memory

Memory

block The minimum unit of 
information that can be either 
present or not present in the 
two-level hierarchy.

hit rate The fraction of mem-
ory accesses found in a cache.
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mance of the memory hierarchy. The

 

 

 

miss rate

 

 (1 – hit rate) is the fraction of
memory accesses not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. 

 

Hit time

 

 is the time to access the upper
level of the memory hierarchy, which includes the time needed to determine
whether the access is a hit or a miss (that is, the time needed to look through the
books on the desk). The

 

 

 

miss penalty

 

 is the time to replace a block in the upper
level with the corresponding block from the lower level, plus the time to deliver
this block to the processor (or, the time to get another book from the shelves and
place it on the desk). Because the upper level is smaller and built using faster
memory parts, the hit time will be much smaller than the time to access the next
level in the hierarchy, which is the major component of the miss penalty. (The
time to examine the books on the desk is much smaller than the time to get up
and get a new book from the shelves.)

As we will see in this chapter, the concepts used to build memory systems
affect many other aspects of a computer, including how the operating system
manages memory and I/O, how compilers generate code, and even how appli-
cations use the computer. Of course, because all programs spend much of
their time accessing memory, the memory system is necessarily a major factor
in determining performance. The reliance on memory hierarchies to achieve
performance has meant that programmers, who used to be able to think of
memory as a flat, random access storage device, now need to understand

 

FIGURE 7.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. 

 

Within each level, the unit of information that is present or not is called a

 

 block.

 

Usually we transfer an entire block when we copy something between levels.

Processor

Data is transferred

miss rate The fraction of 
memory accesses not found in a 
level of the memory hierarchy.

hit time The time required to 
access a level of the memory 
hierarchy, including the time 
needed to determine whether 
the access is a hit or a miss.

miss penalty The time 
required to fetch a block into a 
level of the memory hierarchy 
from the lower level, including 
the time to access the block, 
transmit it from one level to the 
other, insert it in the level that 
experienced the miss, and then 
pass the block to the requestor.
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memory hierarchies to get good performance. We show how important this
understanding is with two examples. 

Since memory systems are so critical to performance, computer designers have
devoted a lot of attention to these systems and developed sophisticated mecha-
nisms for improving the performance of the memory system. In this chapter, we
will see the major conceptual ideas, although many simplifications and abstrac-
tions have been used to keep the material manageable in length and complexity.
We could easily have written hundreds of pages on memory systems, as dozens of
recent doctoral theses have demonstrated.

 

Check
Yourself

 

Which of the following statements are generally true?

1. Caches take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.  

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take advantage of temporal locality by keeping more recently accessed
data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy. 

Figure 7.3 shows that a memory hierarchy uses smaller and faster
memory technologies close to the processor. Thus, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an effective access time
close to that of the highest (and fastest) level and a size equal to that of
the lowest (and largest) level. 

In most systems, the memory is a true hierarchy, meaning that data
cannot be present in level 

 

i

 

 unless it is also present in level 

 

i 

 

+ 1.

The BIG
Picture
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In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. 

 

Cache 

 

was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the
first commercial computer to have this extra level. Today, although this remains
the dominant use of the word 

 

cache

 

, the term is also used to refer to any storage
managed to take advantage of locality of access. Caches first appeared in research
computers in the early 1960s and in production computers later in that same
decade; every general-purpose computer built today, from servers to low-power
embedded processors, includes caches. 

In this section, we begin by looking at a very simple cache in which the processor
requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 7.3 on page 492.)

 

FIGURE 7.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. 

 

This structure with the appropriate operating
mechanisms allows the processor to have an access time that is determined primarily by level 1 of the hier-
archy and yet have a memory as large as level 

 

n. 

 

Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

 

7.2

 

The Basics of Caches

 

7.2

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

Cache: a safe place for hid-
ing or storing things.

Webster’s New World Diction-
ary of the American Language, 
Third College Edition (1988)
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Figure 7.4 shows such a simple cache, before and after requesting a data item that is
not initially in the cache. Before the request, the cache contains a collection of recent
references X

 

1

 

, X

 

2

 

, . . . , X

 

n

 

 – 1

 

, and the processor requests a word X

 

n

 

 that is not in the
cache. This request results in a miss, and the word X

 

n

 

 is brought from memory into
the cache. 

In looking at the scenario in Figure 7.4, there are two questions to
answer: How do we know if a data item is in the cache? Moreover, if it is, how do
we find it? The answers to these two questions are related. If each word can go in
exactly one place in the cache, then it is straightforward to find the word if it is in
the cache. The simplest way to assign a location in the cache for each word in
memory is to assign the cache location based on the 

 

address

 

 of the word in mem-
ory. This cache structure is called 

 

direct mapped

 

, since each memory location is
mapped directly to exactly one location in the cache. The typical mapping
between addresses and cache locations for a direct-mapped cache is usually sim-
ple. For example, almost all direct-mapped caches use the mapping

(Block address) modulo (Number of cache blocks in the cache)

This mapping is attractive because if the number of entries in the cache is a power
of 2, then modulo can be computed simply by using the low-order log

 

2

 

 (cache size
in blocks) bits of the address; hence the cache may be accessed directly with the
low-order bits. For example, Figure 7.5 shows how the memory addresses between

 

FIGURE 7.4 The cache just before and just after a reference to a word X

 

n

 

 that is not
initially in the cache. 

 

This reference causes a miss that forces the cache to fetch X

 

n

 

 from memory and
insert it into the cache. 

X4

X1

Xn – 2

Xn – 1

X2

X3

a. Before the reference to Xn

X4

X1

Xn – 2

Xn – 1

X2

X3

b. After the reference to Xn

Xn

direct-mapped cache A cache 
structure in which each memory 
location is mapped to exactly 
one location in the cache.
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1

 

ten

 

 (00001

 

two

 

) and 29

 

ten

 

 (11101

 

two

 

) map to locations 1

 

ten

 

 (001

 

two

 

) and 5

 

ten

 

(101

 

two

 

) in a direct-mapped cache of eight words. 
Because each cache location can contain the contents of a number of different

memory locations, how do we know whether the data in the cache corresponds to
a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of 

 

tags

 

 to the cache. The
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. The tag needs only to contain the upper
portion of the address, corresponding to the bits that are not used as an index into
the cache. For example, in Figure 7.5 we need only have the upper 2 of the 5
address bits in the tag, since the lower 3-bit index field of the address selects the
block. We exclude the index bits because they are redundant, since by definition
the index field of every address must have the same value. 

We also need a way to recognize that a cache block does not have valid informa-
tion. For instance, when a processor starts up, the cache does not have good data,

 

FIGURE 7.5 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. 

 

Because there are eight words in
the cache, an address X maps to the cache word X modulo 8. That is, the low-order log

 

2

 

(8) = 3 bits are used as
the cache index.

 

 

 

Thus, addresses 00001

 

two

 

, 01001

 

two

 

, 10001

 

two

 

, and 11001

 

two

 

 all map to entry 001

 

two

 

 of the
cache, while addresses 00101

 

two,

 

 01101

 

two

 

, 10101

 

two

 

, and 11101

 

two

 

 all map to entry 101

 

two

 

 of the cache.

Cache

Memory

00001 10001

01
0

10
0

10
1

11
1

11
0

00
0

00
1

01
1

00101 01001 01101 10101 11001 11101

tag A field in a table used for a 
memory hierarchy that contains 
the address information required 
to identify whether the associated 
block in the hierarchy corre-
sponds to a requested word.
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and the tag fields will be meaningless. Even after executing many instructions,
some of the cache entries may still be empty, as in Figure 7.4. Thus, we need to
know that the tag should be ignored for such entries. The most common method
is to add a 

 

valid bit

 

 to indicate whether an entry contains a valid address. If the bit
is not set, there cannot be a match for this block. 

For the rest of this section, we will focus on explaining how reads work in a
cache and how the cache control works for reads. In general, handling reads is a
little simpler than handling writes, since reads do not have to change the contents
of the cache. After seeing the basics of how reads work and how cache misses can
be handled, we’ll examine the cache designs for real computers and detail how
these caches handle writes. 

 

Accessing a Cache

 

Figure 7.6 shows the contents of an eight-word direct-mapped cache as it
responds to a series of requests from the processor. Since there are eight blocks in
the cache, the low-order 3 bits of an address give the block number. Here is the
action for each reference:

When the word at address 18 (10010

 

two

 

) is brought into cache block 2
(010

 

two

 

), the word at address 26 (11010

 

two

 

), which was in cache block 2
(010

 

two

 

), must be replaced by the newly requested data. This behavior allows a
cache to take advantage of temporal locality: recently accessed words replace
less recently referenced words. This situation is directly analogous to needing a
book from the shelves and having no more space on your desk—some book
already on your desk must be returned to the shelves. In a direct-mapped cache,
there is only one place to put the newly requested item and hence only one
choice of what to replace. 

 

Decimal address
of reference

Binary address
of reference

Hit or miss
in cache

Assigned cache block
(where found or placed)

 

22 10110two miss (7.6b)  (10110two mod 8) = 110two

26 11010two miss (7.6c)  (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (7.6d) (10000two mod 8) = 000two

03 00011two miss (7.6e)  (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (7.6f)  (10010two mod 8) = 010two

valid bit A field in the tables of 
a memory hierarchy that indi-
cates that the associated block in 
the hierarchy contains valid data.
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Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory(10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Dlata Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memorlly (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 7.6 The cache contents are shown after each reference request that misses, with the index and tag fields shown in
binary. The cache is initially empty, with all valid bits (V entry in cache) turned off (N). The processor requests the following addresses: 10110two
(miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two (miss), 00011two (miss), 10000two (hit), and 10010two (miss). The figures show the
cache contents after each miss in the sequence has been handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must
be replaced, and a reference to 11010two will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full address
of a word contained in cache block i with tag field j for this cache is j × 8 + i, or equivalently the concatenation of the tag field j and the index i. For
example, in cache f above, index 010 has tag 10 and corresponds to address 10010. 
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We know where to look in the cache for each possible address: the low-order
bits of an address can be used to find the unique cache entry to which the address
could map. Figure 7.7 shows how a referenced address is divided into 

� a cache index, which is used to select the block

� a tag field, which is used to compare with the value of the tag field of the
cache

FIGURE 7.7 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. The tag from the cache is compared against the upper
portion of the address to determine whether the entry in the cache corresponds to the requested address.
Because the cache has 210 (or 1024) words and a block size of 1 word, 10 bits are used to index the cache,
leaving 32 – 10 – 2 = 20 bits to be compared against the tag. If the tag and upper 20 bits of the address are
equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor.
Otherwise, a miss occurs. 

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index
0
1
2

1023
1022
1021

=

Index

20 10

Byte
offset

31 30 13 12 11 2   1 0
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7.2 The Basics of Caches 479

The index of a cache block, together with the tag contents of that block, uniquely
specifies the memory address of the word contained in the cache block. Because
the index field is used as an address to access the cache and because an n-bit field
has 2n values, the total number of entries in a direct-mapped cache must be a
power of 2. In the MIPS architecture, since words are aligned to multiples of 4
bytes, the least significant 2 bits of every address specify a byte within a word and
hence are ignored when selecting the word in the block. 

The total number of bits needed for a cache is a function of the cache size and
the address size because the cache includes both the storage for the data and the
tags. The size of the block above was one word, but normally it is several. Assuming
the 32-bit byte address, a direct-mapped cache of size 2n blocks with 2m-word
(2m+2-byte) blocks will require a tag field whose size is 32 − (n + m + 2)  bits
because n bits are used for the index, m bits are used for the word within the block,
and 2 bits are used for the byte part of the address. The total number of bits in a
direct-mapped cache is 2n × (block size + tag size + valid field size). Since the block
size is 2m words (2m+5 bits) and the address size is 32 bits, the number of bits in
such a cache is 2n × (2m × 32 + (32 − n − m − 2) + 1) = 2n × (2m × 32 + 31 − n − m).
However, the naming convention is to exclude the size of the tag and valid field and
to count only the size of the data. 

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KB of
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K words, which is 212 words, and, with a block size of
4 words (22), 210 blocks. Each block has 4 × 32 or 128 bits of data plus a tag,
which is 32 – 10 – 2 – 2 bits, plus a valid bit. Thus, the total cache size is

 Kbits

or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the
cache is about 1.15 times as many as needed just for the storage of the data.

EXAMPLE

ANSWER

210 128 32 10– 2– 2–( )+ 1+( )× 210 147× 147= =
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480 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Larger blocks exploit spatial locality to lower miss rates. As Figure 7.8 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significant fraction of the cache size because
the number of blocks that can be held in the cache will become small, and there
will be a great deal of competition for those blocks. As a result, a block will be
bumped out of the cache before many of its words are accessed. Stated alterna-
tively, spatial locality among the words in a block decreases with a very large
block; consequently, the benefits in the miss rate become smaller. 

A more serious problem associated with just increasing the block size is that the
cost of a miss increases. The miss penalty is determined by the time required to

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. What block
number does byte address 1200 map to?

We saw the formula on page 474. The block is given by 

(Block address) modulo (Number of cache blocks) 

where the address of the block is

Notice that this block address is the block containing all addresses between

 

and

Thus, with 16 bytes per block, byte address 1200 is block address

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

EXAMPLE

ANSWER

Byte  address
Bytes  per  block 
------------------------------------

Byte   address
Bytes   per  block 
------------------------------------

 
Bytes  per  block ×

Byte  address
Bytes  per  block 
------------------------------------

 
Bytes  per  block Bytes  per  block 1 – ( ) +  ×

1200
16

----------- 75=
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fetch the block from the next lower level of the hierarchy and load it into the
cache. The time to fetch the block has two parts: the latency to the first word and
the transfer time for the rest of the block. Clearly, unless we change the memory
system, the transfer time—and hence the miss penalty—will increase as the block
size grows. Furthermore, the improvement in the miss rate starts to decrease as
the blocks become larger. The result is that the increase in the miss penalty over-
whelms the decrease in the miss rate for large blocks, and cache performance thus
decreases. Of course, if we design the memory to transfer larger blocks more effi-
ciently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

 

Elaboration:

 

The major disadvantage of increasing the block size is that the cache
miss penalty increases. Although it is hard to do anything about the latency component
of the miss penalty, we may be able to hide some of the transfer time so that the miss
penalty is effectively smaller. The simplest method for doing this, called 

 

early restart

 

, is
simply to resume execution as soon as the requested word of the block is returned,
rather than wait for the entire block. Many processors use this technique for instruction
access, where it works best. Instruction accesses are largely sequential, so if the
memory system can deliver a word every clock cycle, the processor may be able to

 

FIGURE 7.8 Miss rate versus block size. 

 

Note that miss rate actually goes up if the block size is too
large relative to the cache size. Each line represents a cache of different size. (This figure is independent of
associativity, discussed soon.) Unfortunately, SPEC2000 traces would take too long if block size were
included, so this data is based on SPEC92.
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restart operation when the requested word is returned, with the memory system deliv-
ering new instruction words just in time. This technique is usually less effective for data
caches because it is likely that the words will be requested from the block in a less pre-
dictable way, and the probability that the processor will need another word from a differ-
ent cache block before the transfer completes is high. If the processor cannot access
the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the
requested word is transferred from the memory to the cache first. The remainder of the
block is then transferred, starting with the address after the requested word and wrap-
ping around to the beginning of the block. This technique, called 

 

requested word first

 

,
or 

 

critical word first

 

, can be slightly faster than early restart, but it is limited by the
same properties that limit early restart. 

 

Handling Cache Misses

 

Before we look at the cache of a real system, let’s see how the control unit deals
with 

 

cache misses

 

. The control unit must detect a miss and process the miss by
fetching the requested data from memory (or, as we shall see, a lower-level cache).
If the cache reports a hit, the computer continues using the data as if nothing
happened. Consequently, we can use the same basic control that we developed in
Chapter 5 and enhanced to accommodate pipelining in Chapter 6. The memories
in the datapath in Chapters 5 and 6 are simply replaced by caches. 

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done with the processor con-
trol unit and with a separate controller that initiates the memory access and refills
the cache. The processing of a cache miss creates a stall, similar to the pipeline stalls
discussed in Chapter 6, as opposed to an interrupt, which would require saving the
state of all registers. For a cache miss, we can stall the entire processor, essentially
freezing the contents of the temporary and programmer-visible registers, while we
wait for memory. In contrast, pipeline stalls, discussed in Chapter 6, are more com-
plex because we must continue executing some instructions while we stall others. 

Let’s look a little more closely at how instruction misses are handled for either
the multicycle or pipelined datapath; the same approach can be easily extended to
handle data misses. If an instruction access results in a miss, then the content of
the Instruction register is invalid. To get the proper instruction into the cache, we
must be able to instruct the lower level in the memory hierarchy to perform a
read. Since the program counter is incremented in the first clock cycle of execu-
tion in both the pipelined and multicycle processors, the address of the instruc-
tion that generates an instruction cache miss is equal to the value of the program
counter minus 4. Once we have the address, we need to instruct the main memory
to perform a read. We wait for the memory to respond (since the access will take
multiple cycles), and then write the words into the cache. 

cache miss A request for data 
from the cache that cannot be 
filled because the data is not 
present in the cache.
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We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to com-
plete its access.

3. Write the cache entry, putting the data from memory in the data portion of
the entry, writing the upper bits of the address (from the ALU) into the tag
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction, this time finding it in the cache.

 The control of the cache on a data access is essentially identical: on a miss, we
simply stall the processor until the memory responds with the data.  

 

Handling Writes

 

Writes work somewhat differently. Suppose on a store instruction, we wrote the
data into only the data cache (without changing main memory); then, after the
write into the cache, memory would have a different value from that in the cache.
In such a case, the cache and memory are said to be 

 

inconsistent

 

. The simplest way
to keep the main memory and the cache consistent is to always write the data into
both the memory and the cache. This scheme is called  write-through  . 

The other key aspect of writes is what occurs on a write miss. We first fetch the
words of the block from memory. After the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. We
also write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good
performance. With a write-through scheme, every write causes the data to be written
to main memory. These writes will take a long time, likely at least 100 processor clock
cycles, and could slow down the processor considerably. For the SPEC2000 integer
benchmarks, for example, 10% of the instructions are stores. If the CPI without
cache misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of
1.0 + 100 

 

×

 

 10% = 11, reducing performance by more than a factor of 10.
One solution to this problem is to use a 

 

write buffer

 

. A write buffer stores the
data while it is waiting to be written to memory. After writing the data into the
cache and into the write buffer, the processor can continue execution. When a
write to main memory completes, the entry in the write buffer is freed. If the write
buffer is full when the processor reaches a write, the processor must stall until
there is an empty position in the write buffer. Of course, if the rate at which the
memory can complete writes is less than the rate at which the processor is gener-

write-through A scheme in 
which writes always update both 
the cache and the memory, 
ensuring that data is always con-
sistent between the two. 

write buffer A queue that holds 
data while the data is waiting to 
be written to memory. 
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ating writes, no amount of buffering can help because writes are being generated
faster than the memory system can accept them. 

The rate at which writes are generated may also be 

 

less

 

 than the rate at which
the memory can accept them, and yet stalls may still occur. This can happen when
the writes occur in bursts. To reduce the occurrence of such stalls, processors usu-
ally increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called 

 

write-back. 

 

In a
write-back scheme, when a write occurs, the new value is written only to the block
in the cache. The modified block is written to the lower level of the hierarchy
when it is replaced. Write-back schemes can improve performance, especially
when processors can generate writes as fast or faster than the writes can be han-
dled by main memory; a write-back scheme is, however, more complex to imple-
ment than write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 7.5, we will describe
the handling of writes in more detail.

 

Elaboration:

 

Writes introduce several complications into caches that are not present
for reads. Here we discuss two of them: the policy on write misses and efficient imple-
mentation of writes in write-back caches. 

Consider a miss in a write-through cache. The strategy followed in most write-
through cache designs, called  fetch-on-miss  ,  fetch-on-write  , or sometimes  allocate-on-
miss

 
, allocates a cache block to the address that missed and fetches the rest of the

block into the cache before writing the data and continuing execution. Alternatively, we
could either allocate the block in the cache but not fetch the data (called no-fetch-on-
write), or even not allocate the block (called no-allocate-on-write). Another name for
these strategies that do not place the written data into the cache is write-around, since
the data is written around the cache to get to memory. The motivation for these
schemes is the observation that sometimes programs write entire blocks of data
before reading them. In such cases, the fetch associated with the initial write miss may
be unnecessary. There are a number of subtle issues involved in implementing these
schemes in multiword blocks, including complicating the handling of write hits by requir-
ing mechanisms similar to those used for write-back caches. 

Actually implementing stores efficiently in a cache that uses a write-back strategy is
more complex than in a write-through cache. In a write-back cache, we must write the
block back to memory if the data in the cache is dirty and we have a cache miss. If we
simply overwrote the block on a store instruction before we knew whether the store had
hit in the cache (as we could for a write-through cache), we would destroy the contents
of the block, which is not backed up in memory. A write-through cache can write the
data into the cache and read the tag; if the tag mismatches, then a miss occurs.
Because the cache is write-through, the overwriting of the block in the cache is not cat-
astrophic since memory has the correct value.

write-back A scheme that han-
dles writes by updating values 
only to the block in the cache, 
then writing the modified block 
to the lower level of the hierar-
chy when the block is replaced.
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7.2 The Basics of Caches 485

In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or
require an extra buffer, called a store buffer, to hold that data—effectively allowing the
store to take only one cycle by pipelining it. When a store buffer is used, the processor
does the cache lookup and places the data in the store buffer during the normal cache
access cycle. Assuming a cache hit, the new data is written from the store buffer into
the cache on the next unused cache access cycle. 

By comparison, in a write-through cache, writes can always be done in one cycle.
There are some extra complications with multiword blocks, however, since we cannot
simply overwrite the tag when we write the data. Instead, we read the tag and write the
data portion of the selected block. If the tag matches the address of the block being
written, the processor can continue normally, since the correct block has been
updated. If the tag does not match, the processor generates a write miss to fetch the
rest of the block corresponding to that address. Because it is always safe to overwrite
the data, write hits still take one cycle.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a dirty block. In such a case, the dirty block is moved to
a write-back buffer associated with the cache while the requested block is read from
memory. The write-back buffer is later written back to memory. Assuming another miss
does not occur immediately, this technique halves the miss penalty when a dirty block
must be replaced.

An Example Cache: The Intrinsity FastMATH Processor

The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache design of the  Intel Pentium P4, but we start
with this simple, yet real, example for pedagogical reasons. Figure 7.9 shows the
organization of the Intrinsity FastMATH data cache.

This processor has a 12-stage pipeline, similar to that discussed in Chapter 6.
When operating at peak speed, the processor can request both an instruction
word and a data word on every clock. To satisfy the demands of the pipeline with-
out stalling, separate instruction and data caches are used. Each cache is 16 KB, or
4K words, with 16-word blocks. 

Read requests for the cache are straightforward. Because there are separate data
and instruction caches, separate control signals will be needed to read and write
each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right
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486 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

one. A block index field is used to control the multiplexor (shown at the
bottom of the figure), which selects the requested word from the 16 words
in the indexed block.

3. If the cache signals miss, we send the address to the main memory. When
the memory returns with the data, we write it into the cache and then read
it to fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back,
leaving it up to the operating system to decide which strategy to use for an appli-
cation. It has a one-entry write buffer.

FIGURE 7.9 The 16 KB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. The tag field is 18 bits
wide and the index field is 8 bits wide, while a 4-bit field (bits 5–2) is used to index the block and select the word from the block using a 16-to-1 multi-
plexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, with the block offset supply-
ing the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 times as many words as blocks in the cache.

Address (showing bit positions)

DataHit

Data

Tag

V Tag

32

18

=

Index

18 8 Byte
offset

31 14 13 2 1 06 5

4

Block offset

256
entries
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7.2 The Basics of Caches 487

What cache miss rates are attained with a cache structure like that used by the
Intrinsity FastMATH? Figure 7.10 shows the miss rates for the instruction and
data caches for the SPEC2000 integer benchmarks. The combined miss rate is the
effective miss rate per reference for each program after accounting for the differ-
ing frequency of instruction and data accesses.

Although miss rate is an important characteristic of cache designs, the ultimate
measure will be the effect of the memory system on program execution time; we’ll
see how miss rate and execution time are related shortly. 

Elaboration: A combined cache with a total size equal to the sum of the two split
caches will usually have a better hit rate. This higher rate occurs because the combined
cache does not rigidly divide the number of entries that may be used by instructions
from those that may be used by data. Nonetheless, many processors use a split
instruction and data cache to increase cache bandwidth. 

Here are miss rates for caches the size of those found in the Intrinsity FastMATH
processor, and for a combined cache whose size is equal to the total of the two
caches:

� Total cache size: 32 KB

� Split cache effective miss rate: 3.24%

� Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse. 
The advantage of doubling the cache bandwidth, by supporting both an instruction

and data access simultaneously, easily overcomes the disadvantage of a slightly
increased miss rate. This observation is another reminder that we cannot use miss
rate as the sole measure of cache performance, as Section 7.3 shows.

Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from
DRAMs. In Section 7.1, we saw that DRAMs are designed with the primary
emphasis on density rather than access time. Although it is difficult to reduce the
latency to fetch the first word from memory, we can reduce the miss penalty if we
increase the bandwidth from the memory to the cache. This reduction allows

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 7.10 Approximate instruction and data miss rates for the Intrinsity FastMATH
processor for SPEC2000 benchmarks. The combined miss rate is the effective miss rate seen for the
combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc-
tion and data individual miss rates by the frequency of instruction and data references. 

split cache A scheme in which 
a level of the memory hierarchy 
is composed of two independent 
caches that operate in parallel 
with each other, with one 
handling instructions and one 
handling data.
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488 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

larger block sizes to be used while still maintaining a low miss penalty, similar to
that for a smaller block. 

The processor is typically connected to memory over a bus. The clock rate of
the bus is usually much slower than the processor, by as much as a factor of 10.
The speed of this bus affects the miss penalty.

To understand the impact of different organizations of memory, let’s define a
set of hypothetical memory access times. Assume

� 1 memory bus clock cycle to send the address

� 15 memory bus clock cycles for each DRAM access initiated

� 1 memory bus clock cycle to send a word of data

If we have a cache block of four words and a one-word-wide bank of DRAMs,
the miss penalty would be 1 + 4 × 15 + 4 × 1 = 65  memory bus clock cycles. Thus,
the number of bytes transferred per bus clock cycle for a single miss would be

Figure 7.11 shows three options for designing the memory system. The first
option follows what we have been assuming: memory is one word wide, and all
accesses are made sequentially. The second option increases the bandwidth to
memory by widening the memory and the buses between the processor and mem-
ory; this allows parallel access to all the words of the block. The third option
increases the bandwidth by widening the memory but not the interconnection
bus. Thus, we still pay a cost to transmit each word, but we can avoid paying the
cost of the access latency more than once. Let’s look at how much these other two
options improve the 65-cycle miss penalty that we would see for the first option
[Figure 7.11(a)]. 

Increasing the width of the memory and the bus will increase the memory
bandwidth proportionally, decreasing both the access time and transfer time por-
tions of the miss penalty. With a main memory width of two words, the miss pen-
alty drops from 65 memory bus clock cycles to 1 + (2 × 15) + 2 × 1 = 33  memory
bus clock cycles. With a four-word-wide memory, the miss penalty is just 17
memory bus clock cycles. The bandwidth for a single miss is then 0.48 (almost
twice as high) bytes per bus clock cycle for a memory that is two words wide, and
0.94 bytes per bus clock cycle when the memory is four words wide (almost four
times higher). The major costs of this enhancement are the wider bus and the
potential increase in cache access time due to the multiplexor and control logic
between the processor and cache. 

Instead of making the entire path between the memory and cache wider, the
memory chips can be organized in banks to read or write multiple words in one

4 4×
65

------------ 0.25=
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7.2 The Basics of Caches 489

access time rather than reading or writing a single word each time. Each bank
could be one word wide so that the width of the bus and the cache need not
change, but sending an address to several banks permits them all to read simulta-
neously. This scheme, which is called interleaving, retains the advantage of incur-
ring the full memory latency only once. For example, with four banks, the time to
get a four-word block would consist of 1 cycle to transmit the address and read
request to the banks, 15 cycles for all four banks to access memory, and 4 cycles to
send the four words back to the cache. This yields a miss penalty of 1 + (1 × 15) +
4 × 1 = 20 memory bus clock cycles. This is an effective bandwidth per miss of
0.80 bytes per clock, or about three times the bandwidth for the one-word-wide

FIGURE 7.11 The primary method of achieving higher memory bandwidth is to increase the physical or logical width of the
memory system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all components are one
word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved memory. In (b),  the logic between
the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate words of the cache on writes.
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490 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

memory and bus. Banks are also valuable on writes. Each bank can write indepen-
dently, quadrupling the write bandwidth and leading to fewer stalls in a write-
through cache. As we will see, an alternative strategy for writes makes interleaving
even more attractive. 

Elaboration: Memory chips are organized to produce a number of output bits, usu-
ally 4 to 32, with 16 being the most popular in 2006. We describe the organization of a
RAM as d × w, where d is the number of addressable locations (the depth) and w is the
output (or width of each location). One path to improving the rate at which we transfer
data from the memory to the caches is to take advantage of the structure of DRAMs.
DRAMs are logically organized as rectangular arrays, and access time is divided into
row access and column access. DRAMs buffer a row of bits inside the DRAM for col-
umn access. They also come with optional timing signals that allow repeated accesses
to the buffer without a row access time. This capability, originally called page mode,
has gone through a series of enhancements. In page mode, the buffer acts like an
SRAM; by changing column address, random bits can be accessed in the buffer until
the next row access. This capability changes the access time significantly, since the
access time to bits in the row is much lower. Figure 7.12 shows how the density, cost,
and access time of DRAMs have changed over the years.

The newest development is DDR SDRAMs (double data rate synchronous DRAMs).
SDRAMs provide for a burst access to data from a series of sequential locations in the
DRAM. An SDRAM is supplied with a starting address and a burst length. The data in
the burst is transferred under control of a clock signal, which in 2006 can run at up to

Year introduced Chip size $ per MB
Total access time to
a new row/column

Column access
time to existing row

1980 0 64 Kbit $1500 250 ns 150 ns

1983 0256 Kbit $$500 185 ns 100 ns

1985 1 Mbit $$200 135 ns 040 ns

1989 4 Mbit $$50 110 ns 040 ns

1992 16 Mbit $$15 090 ns 030 ns

1996 64 Mbit $$10 060 ns  12 ns

1998 128 Mbit $4  60 ns  10 ns

2000 256 Mbit $1  55 ns   7 ns

2004 512 Mbit $$0.25  50 ns   5 ns

2006 512 Mbit $0.20  40 ns      2.5 ns

FIGURE 7.12 DRAM size increased by multiples of four approximately once every three
years until 1996, and thereafter considerably slower. The improvements in access time have
been slower but continuous, and cost almost tracks density improvements, although cost is often affected
by other issues, such as availability and demand. The cost per megabyte is not adjusted for inflation. 
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7.2 The Basics of Caches 491

400 MHz. The two key advantages of SDRAMs are the use of a clock that eliminates
the need to synchronize and the elimination of the need to supply successive
addresses in the burst. The DDR part of the name means data transfers on both the
leading and falling edge of the clock, thereby getting twice as much bandwidth as you
might expect based on the clock rate and the data width. To deliver such high band-
width, the internal DRAM is organized as interleaved memory banks.

The advantage of these optimizations is that they use the circuitry already largely on
the DRAMs, adding little cost to the system while achieving a significant improvement
in bandwidth. The internal architecture of DRAMs and how these optimizations are
implemented are described in Section B.8 of  Appendix B.

Summary

We began the previous section by examining the simplest of caches: a direct-mapped
cache with a one-word block. In such a cache, both hits and misses are simple, since a
word can go in exactly one location and there is a separate tag for every word. To keep
the cache and memory consistent, a write-through scheme can be used, so that every
write into the cache also causes memory to be updated. The alternative to write-
through is a write-back scheme that copies a block back to memory when it is
replaced; we’ll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than
one word. The use of a larger block decreases the miss rate and improves the effi-
ciency of the cache by reducing the amount of tag storage relative to the amount
of data storage in the cache. Although a larger block size decreases the miss rate, it
can also increase the miss penalty. If the miss penalty increased linearly with the
block size, larger blocks could easily lead to lower performance. To avoid this, the
bandwidth of main memory is increased to transfer cache blocks more efficiently.
The two common methods for doing this are making the memory wider and
interleaving. In both cases, we reduce the time to fetch the block by minimizing
the number of times we must start a new memory access to fetch a block, and,
with a wider bus, we can also decrease the time needed to send the block from the
memory to the cache. 

Check 
Yourself

The speed of the memory system affects the designer’s decision on the size of the
cache block. Which of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block.

2. The shorter the memory latency, the larger the cache block.

3. The higher the memory bandwidth, the smaller the cache block.

4. The higher the memory bandwidth, the larger the cache block.
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492 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

In this section, we begin by looking at how to measure and analyze cache perfor-
mance; we then explore two different techniques for improving cache perfor-
mance. One focuses on reducing the miss rate by reducing the probability that
two different memory blocks will contend for the same cache location. The sec-
ond technique reduces the miss penalty by adding an additional level to the hier-
archy. This technique, called multilevel caching, first appeared in high-end
computers selling for over $100,000 in 1990; since then it has become common on
desktop computers selling for less than $1000!

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles) 
× Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continu-
ing the write (see the elaboration on page 484 for more details on dealing with
writes), and write buffer stalls, which occur when the write buffer is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

7.3 Measuring and Improving Cache 
Performance 7.3

Memory-stall  clock  cycles Read-stall  cycles Write-stall  cycles +=

Read-stall  cycles Reads
Program

 --------------------- Read  miss  rate Read  miss  penalty ××  =
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Because the write buffer stalls depend on the timing of writes, and not just the
frequency, it is not possible to give a simple equation to compute such stalls. For-
tunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly
exceeds the average write frequency in programs (e.g., by a factor of 2), the write
buffer stalls will be small, and we can safely ignore them. If a system did not meet
these criteria, it would not be well designed; instead, the designer should have used
either a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 7.5.

In most write-through cache organizations, the read and write miss penalties
are the same (the time to fetch the block from memory). If we assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

We can also factor this as

Let’s consider a simple example to help us understand the impact of cache perfor-
mance on processor performance.

 

Calculating Cache Performance

 Assume an instruction cache miss rate for a program is 2% and a data cache
miss rate is 4%. If a processor has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles for all misses, determine how much faster a pro-
cessor would run with a perfect cache that never missed. Use the instruction
frequencies for SPECint2000 from Chapter 3, Figure 3.26, on page 228.

Write-stall  cycles Writes
Program

 --------------------- Write  miss  rate Write  miss  penalty ×× 
  =

Write  buffer  stalls +

Memory-stall  clock  cycles Memory  accesses
Program

 ----------------------------------------- Miss  rate Miss  penalty ××  =

Memory-stall  clock  cycles Instructions
Program

 ----------------------------- 
Misses

Instruction
 --------------------------- Miss  penalty ××  =

EXAMPLE
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 What happens if the processor is made faster, but the memory system is not?
The amount of time spent on memory stalls will take up an increasing fraction of
the execution time; Amdahl’s law, which we examined in Chapter 4, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the
system with the perfect cache would be

 times faster

The amount of execution time spent on memory stalls would have risen from

 

to

The number of memory miss cycles for instructions in terms of the Instruc-
tion count (I) is

Assume the frequency of all loads and stores in SPECint2000 is 36%. There-
fore, we can find the number of memory miss cycles for data references:

The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is
more than 3 cycles of memory stall per instruction. Accordingly, the CPI with
memory stalls is 2 + 3.44 = 5.44. Since there is no change in instruction count
or clock rate, the ratio of the CPU execution times is

The performance with the perfect cache is better by .

ANSWER

Instruction  miss  cycles I 2% 100 ×× 2.00 I × = =

Data  miss  cycles I 36% 4% 100 ××× 1.44 I × = =

CPU  time  with  stalls
CPU  time  with  perfect  cache 
--------------------------------------------------------------------

 

I CPI

 

stall

 
×

 

Clock  cycle ×  

I CPI

 

perfect

 
×

 

Clock  cycle ×  
---------------------------------------------------------------

 
=

CPIstall

CPIperfect

--------------------- 5.44
2

----------==

5.44
2

---------- 2.72=

4.44
1

---------- 4.44=

3.44
5.44
---------- 63%=
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Similarly, increasing clock rate without changing the memory system also
increases the performance lost due to cache misses, as the next example shows.

 

Cache Performance with Increased Clock Rate

 

Suppose we increase the performance of the computer in the previous exam-
ple by doubling its clock rate. Since the main memory speed is unlikely to
change, assume that the absolute time to handle a cache miss does not
change. How much faster will the computer be with the faster clock, assum-
ing the same miss rate as the previous example?

Measured in the faster clock cycles, the new miss penalty will be twice as
many clock cycles, or 200 clock cycles. Hence:

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88 =
8.88, compared to a CPI with cache misses of 5.44 for the slower computer. 

Using the formula for CPU time from the previous example, we can com-
pute the relative performance as

Thus, the computer with the faster clock is about 1.2 times faster rather than
2 times faster, which it would have been if we ignored cache misses.

3.44
4.44
---------- 77%=

EXAMPLE

ANSWER

Total  miss  cycles  per  instruction 2 % 200 ×( ) 36 % 4 % 200 ×( )× + 6.88 = =

Performance  with  fast  clock
Performance  with  slow  clock 
---------------------------------------------------------------------

 
Execution  time  with  slow  clock
Execution  time  with  fast  clock 
--------------------------------------------------------------------------

 
=

IC CPIslow clock Clock  cycle ××  

IC CPI

 

fast clock

 

Clock  cycle
2

 --------------------------- ××  
------------------------------------------------------------------------

 
=

5.44

8.88 1
2
--×

------------------= 1.23=
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As these examples illustrate, relative cache penalties increase as a processor
becomes faster. Furthermore, if a processor improves both clock rate and CPI, it
suffers a double hit:

1. The lower the CPI, the more pronounced the impact of stall cycles. 

2. The main memory system is unlikely to improve as fast as processor cycle
time, primarily because the performance of the underlying DRAM is not
getting much faster. When calculating CPI, the cache miss penalty is mea-
sured in processor clock cycles needed for a miss. Therefore, if the main
memories of two processors have the same absolute access times, a higher
processor clock rate leads to a larger miss penalty.

Thus, the importance of cache performance for processors with low CPI and
high clock rates is greater, and consequently the danger of neglecting cache
behavior in assessing the performance of such processors is greater. As we will
see in Section 7.6, the use of fast, pipelined processors in desktop PCs and
workstations has led to the use of sophisticated cache systems even in comput-
ers selling for less than $1000. 

The previous examples and equations assume that the hit time is not a fac-
tor in determining cache performance. Clearly, if the hit time increases, the
total time to access a word from the memory system will increase, possibly
causing an increase in the processor cycle time. Although we will see addi-
tional examples of what can increase hit time shortly, one example is increas-
ing the cache size. A larger cache could clearly have a longer access time, just
as if your desk in the library was very large (say, 3 square meters), it would
take longer to locate a book on the desk. With pipelines deeper than five
stages, an increase in hit time likely adds another stage to the pipeline, since it
may take multiple cycles for a cache hit. Although it is more complex to calcu-
late the performance impact of a deeper pipeline, at some point the increase in
hit time for a larger cache could dominate the improvement in hit rate, lead-
ing to a decrease in processor performance. 

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in
“Fallacies and Pitfalls” (Section 7.7).

 

Reducing Cache Misses by More Flexible Placement
of Blocks

 

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it
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is called 

 

direct mapped

 

 because there is a direct mapping from any block address in
memory to a single location in the upper level of the hierarchy. There is actually a
whole range of schemes for placing blocks. At one extreme is direct mapped,
where a block can be placed in exactly one location. 

At the other extreme is a scheme where a block can be placed in 

 

any

 

 location in
the cache. Such a scheme is called 

 

fully associative

 

 because a block in memory
may be associated with any entry in the cache. To find a given block in a fully asso-
ciative cache, all the entries in the cache must be searched because a block can be
placed in any one. To make the search practical, it is done in parallel with a com-
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively making fully associative placement practical only for
caches with small numbers of blocks. 

The middle range of designs between direct mapped and fully associative is
called 

 

set associative

 

. In a

 

 

 

set-associative cache, there are a fixed number of
locations (at least two) where each block can be placed; a set-associative cache
with 

 

n

 

 locations for a block is called an 

 

n

 

-way set-associative cache. An

 

 n

 

-way
set-associative cache consists of a number of sets, each of which consists of 

 

n

 

blocks. Each block in the memory maps to a unique 

 

set

 

 in the cache given by the
index field, and a block can be placed in 

 

any

 

 element of that set. Thus, a set-
associative placement combines direct-mapped placement and fully associative
placement: a block is directly mapped into a set, and then all the blocks in the
set are searched for a match. 

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of cache blocks)

In a set-associative cache, the

 

 

 

set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)     

Since the block may be placed in any element of the set, 
 

all the tags of all the ele-
ments of the set

 

 must be searched. In a fully associative cache, the block can go
anywhere and 

 

all tags of all the blocks in the cache

 

 must be searched. For exam-
ple, Figure 7.13 shows where block 12 may be placed in a cache with eight blocks
total, according to the block placement policy for direct-mapped, two-way set-
associative, and fully associative caches. 

We can think of every block placement strategy as a variation on set asso-
ciativity. Figure 7.14 shows the possible associativity structures for an eight-block
cache. A direct-mapped cache is simply a one-way set-associative cache: each

fully associative cache A 
cache structure in which a block 
can be placed in any location in 
the cache.

set-associative cache A cache 
that has a fixed number of loca-
tions (at least two) where each 
block can be placed.
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cache entry holds one block and each set has one element. A fully associative cache
with 

 

m

 

 entries is simply an 

 

m

 

-way set-associative cache; it has one set with 

 

m

 

blocks, and an entry can reside in any block within that set.  
The advantage of increasing the degree of associativity is that it usually

decreases the miss rate, as the next example shows. The main disadvantage, which
we discuss in more detail shortly, is an increase in the hit time.

 

FIGURE 7.13 The location of a memory block whose address is 12 in a cache with eight blocks varies for direct-mapped,
set-associative, and fully associative placement.

 

 

 

In direct-mapped placement, there is only one cache block where memory block 12 can be
found, and that block is given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block 12 must be in set
(12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative placement, the memory block for block address 12 can
appear in any of the eight cache blocks.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1

2

Set associative

20 1 3Set #

Data

Tag

Search

1

2

Fully associative

Data

Tag

Search

1

2

 
Misses and Associativity in Caches

 

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set associative, and the
third is direct mapped. Find the number of misses for each cache organiza-
tion given the following sequence of block addresses: 0, 8, 0, 6, 8.

EXAMPLE
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FIGURE 7.14 An eight-block cache configured as direct mapped, two-way set associa-
tive, four-way set associative, and fully associative.

 

 The total size of the cache in blocks is equal
to the number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity
decreases the number of sets, while increasing the number of elements per set. With eight blocks, an eight-
way set-associative cache is the same as a fully associative cache.

 
The direct-mapped case is easiest. First, let’s determine to which cache block
each block address maps:

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

0

1

Four-way set associative

TagTag Data DataSet

0

1

2

3

Two-way set associative

Tag DataBlock

0

1

2

3

4

5

6

7

One-way set associative

(direct mapped)

ANSWER

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0
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Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored text to show a new entry added to
the cache for the associate reference, and plain text to show an old entry in
the cache:

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two ele-

ments per set. Let’s first determine to which set each block address maps:

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past is
replaced. (We will discuss replacement rules in more detail shortly.) Using
this replacement rule, the contents of the set-associative cache after each ref-
erence looks like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]
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How much of a reduction in the miss rate is achieved by associativity? Figure 7.15
shows the improvement for the SPEC2000 benchmarks for a 64 KB data cache with
a 16-word block, and associativity ranging from direct mapped to eight-way. Going
from one-way to two-way associativity decreases the miss rate by about 15%, but
there is little further improvement in going to higher associativity.

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache. 

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. The fully associative cache
has the best performance, with only three misses:

For this series of references, three misses is the best we can do because
three unique block addresses are accessed. Notice that if we had eight blocks
in the cache, there would be no replacements in the two-way set-associative
cache (check this for yourself), and it would have the same number of misses
as the fully associative cache. Similarly, if we had 16 blocks, all three caches
would have the same number of misses. This change in miss rate shows us
that cache size and associativity are not independent in determining cache
performance.

 

Associativity Data miss rate

 

1 10.3%

2  8.6%

4  8.3%

8  8.1%

 

FIGURE 7.15 The data cache miss rates for an organization like the Intrinsity FastMATH
processor for SPEC2000 benchmarks with associativity varying from one-way to eight-
way. 

 

These results for 10 SPEC2000 programs are from Hennessy and Patterson [2003].

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]
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Locating a Block in the Cache

 

Now, let’s consider the task of finding a block in a cache that is set associative. Just
as in a direct-mapped cache, each block in a set-associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it matches the block address from the proces-
sor. Figure 7.16 shows how the address is decomposed. The index value is used to
select the set containing the address of interest, and the tags of all the blocks in the
set must be searched. Because speed is of the essence, all the tags in the selected set
are searched in parallel. As in a fully associative cache, a sequential search would
make the hit time of a set-associative cache too slow. 

If the total cache size is kept the same, increasing the associativity increases
the number of blocks per set, which is the number of simultaneous compares
needed to perform the search in parallel: each increase by a factor of 2 in asso-
ciativity doubles the number of blocks per set and halves the number of sets.
Accordingly, each factor-of-2 increase in associativity decreases the size of the
index by 1 bit and increases the size of the tag by 1 bit. In a fully associative
cache, there is effectively only one set, and all the blocks must be checked in par-
allel. Thus, there is no index, and the entire address, excluding the block offset,
is compared against the tag of every block. In other words, we search the entire
cache without any indexing.

In a direct-mapped cache, such as in Figure 7.7 on page 478, only a single com-
parator is needed, because the entry can be in only one block, and we access the
cache simply by indexing. Figure 7.17 shows that in a four-way set-associative
cache, four comparators are needed, together with a 4-to-1 multiplexor to choose
among the four potential members of the selected set. The cache access consists of
indexing the appropriate set and then searching the tags of the set. The costs of an
associative cache are the extra comparators and any delay imposed by having to do
the compare and select from among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware.  

FIGURE 7.16 The three portions of an address in a set-associative or direct-mapped
cache. 

 

The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

Block offsetTag Index

Patterson, DA, & Hennessy, JL 2007, Computer Organization and Design, Revised Printing, Third Edition : The Hardware/Software Interface, Elsevier Science, San Francisco. Available
         from: ProQuest Ebook Central. [22 February 2018].
Created from tut on 2018-02-22 03:59:51.

C
op

yr
ig

ht
 ©

 2
00

7.
 E

ls
ev

ie
r 

S
ci

en
ce

. A
ll 

rig
ht

s 
re

se
rv

ed
.



 

7.3 Measuring and Improving Cache Performance

 

503

 

FIGURE 7.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1 multiplexor.

 

The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators is used to select the data from
one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the
data portions of the cache RAMs can be used to select the entry in the set that drives the output. The Output enable signal comes from the compara-
tors, causing the element that matches to drive the data outputs. This organization eliminates the need for the multiplexor. 

Address

Data

Tag

V Tag

=

Index

22 8

31 30 12 11 10 9 8 3 2 1 0

4-to-1 multiplexor

Index
0
1
2

253
254
255

DataV Tag

=

DataV Tag

=

DataV Tag

22

=

32

DataHit

 

Size of Tags versus Set Associativity

 

Increasing associativity requires more comparators, and more tag bits per cache
block. Assuming a cache of 4K blocks, a four-word block size, and a 32-bit ad-
dress, find the total number of sets and the total number of tag bits for caches that
are direct mapped, two-way and four-way set associative, and fully associative.

EXAMPLE
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Choosing Which Block to Replace

 

When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set. 

The most commonly used scheme is 

 

least recently used

 

 (LRU), which we used
in the previous example.

 

 

 

In an LRU scheme, the block replaced is the one that has
been unused for the longest time. LRU replacement is implemented by keeping
track of when each element in a set was used relative to the other elements in the
set. For a two-way set-associative cache, tracking when the two elements were
used can be implemented by keeping a single bit in each set and setting the bit to
indicate an element whenever that element is referenced. As associativity
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative
scheme for replacement.  

Reducing the Miss Penalty Using Multilevel Caches

 

All modern computers make use of caches. In most cases, these caches are imple-
mented on the same die as the microprocessor that forms the processor. To fur-
ther close the gap between the fast clock rates of modern processors and the
relatively long time required to access DRAMs, many microprocessors support an
additional level of caching. This second-level cache, which can be on the same
chip or off-chip in a separate set of SRAMs, is accessed whenever a miss occurs in

Since there are 16 (= 2

 

4

 

) bytes per block, a 32-bit address yields 32 – 4 = 28
bits to be used for index and tag. The direct-mapped cache has the same
number of sets as blocks, and hence 12 bits of index, since log

 

2

 

(4K) 

 

= 12;
hence, the total number of tag bits is (28 – 12) × 4K = 16 × 4K = 64 Kbits. 

Each degree of associativity decreases the number of sets by a factor of 2 and
thus decreases the number of bits used to index the cache by 1 and increases the
number of bits in the tag by 1. Thus, for a two-way set-associative cache, there are
2K sets, and the total number of tag bits is (28 –11) × 2 × 2K= 34 × 2K = 68 Kbits.
For a four-way set-associative cache, the total number of sets is 1K, and the total
number of tag bits is (28 – 10) × 4 × 1K = 72 × 1K = 72 Kbits.

For a fully associative cache, there is only one set with 4K blocks, and the
tag is 28 bits, leading to a total of 28 × 4K × 1 = 112K tag bits. 

ANSWER

least recently used (LRU) A 
replacement scheme in which 
the block replaced is the one 
that has been unused for the 
longest time.
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the primary cache. If the second-level cache contains the desired data, the miss
penalty for the first-level cache will be the access time of the second-level cache,
which will be much less than the access time of main memory. If neither the pri-
mary nor secondary cache contains the data, a main memory access is required,
and a larger miss penalty is incurred. 

How significant is the performance improvement from the use of a secondary
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 5 GHz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the proces-
sor be if we add a secondary cache that has a 5 ns access time for either a hit
or a miss and is large enough to reduce the miss rate to main memory to
0.5%?

The miss penalty to main memory is

The effective CPI with one level of caching is given by

For the processor with one level of caching,

Total CPI = 1.0 + Memory-stall cycles per instruction = 1.0 + 2% × 500 = 11.0

With two levels of caching, a miss in the primary (or first-level) cache can
be satisfied either by the secondary cache or by main memory. The miss
penalty for an access to the second-level cache is

EXAMPLE

ANSWER
100  ns

0.2

 
ns

clock cycle

 

------------------------
----------------------------------

 500 clock cycles 
=

Total  CPI Base  CPI + Memory-stall  cycles  per  instruction =
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The design considerations for a primary and secondary cache are significantly
different because the presence of the other cache changes the best choice versus a
single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle, while allow-
ing the secondary cache to focus on miss rate to reduce the penalty of long mem-
ory access times. 

The interaction of the two caches permits such a focus. The miss penalty of the
primary cache is significantly reduced by the presence of the secondary cache,
allowing the primary to be smaller and have a higher miss rate. For the secondary
cache, access time becomes less important with the presence of the primary cache,
since the access time of the secondary cache affects the miss penalty of the primary
cache, rather than directly affecting the primary cache hit time or the processor
cycle time. 

 

If the miss is satisfied in the secondary cache, then this is the entire miss penal-
ty. If the miss needs to go to main memory, then the total miss penalty is the
sum of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from
both levels of cache and the base CPI: 

Total CPI = 1 + Primary stalls per instruction
+ Secondary stalls per instruction 
= 1 + 2% 

 

×

 

 25 + 0.5% 

 

×

 

 500 = 1 + 0.5 + 2.5 = 4.0

Thus, the processor with the secondary cache is faster by

 

 Alternatively, we could have computed the stall cycles by summing the stall cy-
cles of those references that hit in the secondary cache ((2% – 0.5%) 

 

×

 

 25 = 0.4)
and those references that go to main memory, which must include the cost to ac-
cess the secondary cache as well as the main memory access time (0.5% 

 

×

 

 (25 +
500) = 2.6). The sum, 1.0 + 0.4 + 2.6, is again 4.0.

5  ns

0.2

 
ns

clock cycle

 
-------------------

--------------------------- 25 clock cycles =

11.0
4.0

---------- 2.8=
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The effect of these changes on the two caches can be seen by comparing each

cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a 

 
multilevel cache

 
 is often smaller. Furthermore,

the primary cache often uses a smaller block size, to go with the smaller cache size
and reduced miss penalty. In comparison, the secondary cache will often be larger
than in a single-level cache, since the access time of the secondary cache is less
critical. With a larger total size, the secondary cache often will use a larger block
size than appropriate with a single-level cache.       

 

Elaboration:

 

Multilevel caches create several complications. First, there are now
several different types of misses and corresponding miss rates. In the example on
page 498, we saw the primary cache miss rate and the global miss rate—the fraction
of references that missed in all cache levels. There is also a miss rate for the second-
ary cache, which is the ratio of all misses in the secondary cache divided by the num-
ber of accesses. This miss rate is called the local miss rate

 

 

 

of the secondary cache.
Because the primary cache filters accesses, especially those with good spatial and
temporal locality, the local miss rate of the secondary cache is much higher than the
global miss rate. For the example on page 498, we can compute the local miss rate of
the secondary cache as 0.5%/2% = 25%! Luckily, the global miss rate dictates how
often we must access the main memory.

multilevel cache A memory 
hierarchy with multiple levels of 
caches, rather than just a cache 
and main memory.

 

In Chapter 2, we saw that Quicksort had an algorithmic advantage over Bubble
Sort that could not be overcome by language or compiler optimization. Figure
7.18(a) shows instructions executed by item searched for Radix Sort versus Quick-
sort. Indeed, for large arrays, Radix Sort has an algorithmic advantage over Quick-
sort in terms of number of operations. Figure 7.18(b) shows time per key instead
of instructions executed. We see that the lines start on the same trajectory as Fig-
ure 7.18(a), but then the Radix Sort line diverges as the data to sort increases.
What is going on? Figure 7.18(c) answers by looking at the cache misses per item
sorted: Quicksort consistently has many fewer misses per item to be sorted.

Alas, standard algorithmic analysis ignores the impact of the memory hierar-
chy. As faster clock rates and Moore’s law allow architects to squeeze all of the per-
formance out of a stream of instructions, using the memory hierarchy well is
critical to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today’s computers.

 

Understanding 
Program 
Performance

global miss rate The fraction 
of references that miss in all lev-
els of a multilevel cache. 

local miss rate The fraction of 
references to one level of a cache 
that miss; used in multilevel 
hierarchies.
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FIGURE 7.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c) cache misses per item sorted. 

 

This data is from a
paper by LaMarca and Ladner [1996]. Although the numbers would change for newer computers, the idea
still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy
into account, to regain its algorithmic advantages (see Section 7.7). The basic idea of cache optimizations is
to use all the data in a block repeatedly before it is replaced on a miss.
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Additional complications arise because the caches may have different block sizes to
match the larger or smaller total size. Likewise, the associativity of the cache may
change. On-chip caches are often built with associativity of four or higher, while off-chip
caches rarely have associativity of greater than two. On-chip L1 caches tend to have
lower associativity than on-chip L2 caches since fast hit time is more important for L1
caches. These changes in block size and associativity introduce complications in the
modeling of the caches, which typically means that all levels need to be simulated
together to understand the behavior.

 

Elaboration:

 

With out-of-order processors, performance is more complex, since they
execute instructions during the miss penalty. Instead of instruction miss rates and data
miss rates, we use misses per instruction, and this formula:

There is no general way to calculate overlapped miss latency, so evaluations of
memory hierarchies for out-of-order processors inevitably require simulation of the pro-
cessor and memory hierarchy. Only by seeing the execution of the processor during
each miss can we see if the processor stalls waiting for data or simply finds other work
to do. A guideline is that the processor often hides the miss penalty for an L1 cache
miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

 

Elaboration:

 

The performance challenge for algorithms is that the memory hierarchy
varies between different implementations of the same architecture in cache size, asso-
ciativity, block size, and number of caches. To copy with such variability, some recent
numerical libraries parameterize their algorithms and then search the parameter space
at runtime to find the best combination for a particular computer.

 

Check 
Yourself

 

Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second-level
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level
caches are more concerned about hit time.

Memory-stall cycles
Instruction

-----------------------------------------------------------------------------
Misses

Instruction
----------------------------------------- Total miss latency Overlapped miss latency–( )×=
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Summary

 
In this section, we focused on three topics: cache performance, using associativity
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss
penalties. 

Since the total number of cycles spent on a program is the sum of the processor
cycles and the memory-stall cycles, the memory system can have a significant effect
on program execution time. In fact, as processors get faster (by lowering CPI or by
increasing the clock rate or both), the relative effect of the memory-stall cycles
increases, making good memory systems critical to achieving high performance.
The number of memory-stall cycles depends on both the miss rate and the miss
penalty. The challenge, as we will see in Section 7.5, is to reduce one of these factors
without significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.
Such schemes can reduce the miss rate of a cache by allowing more flexible place-
ment of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to sat-
isfy a request. This search is usually implemented by having a comparator per
cache block and searching the tags in parallel. The cost of the comparators makes
large fully associative caches impractical. Set-associative caches are a practical alter-
native, since we need only search among the elements of a unique set that is cho-
sen by indexing. Set-associative caches have higher miss rates but are faster to
access. The amount of associativity that yields the best performance depends on
both the technology and the details of the implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss pen-
alty by allowing a larger secondary cache to handle misses to the primary cache.
Second-level caches have become commonplace as designers find that limited
silicon and the goals of high clock rates prevent primary caches from becoming
large. The secondary cache, which is often 10 or more times larger than the pri-
mary cache, handles many accesses that miss in the primary cache. In such
cases, the miss penalty is that of the access time to the secondary cache (typically
< 10 processor cycles) versus the access time to memory (typically > 100 proces-
sor cycles). As with associativity, the design trade-offs between the size of the
secondary cache and its access time depend on a number of aspects of the
implementation. 
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In the previous section, we saw how caches provided fast access to recently used
portions of a program’s code and data. Similarly, the main memory can act as a
“cache” for the secondary storage, usually implemented with magnetic disks. This
technique is called 

 

virtual memory

 

. Historically, there were two major motiva-
tions for virtual memory: to allow efficient and safe sharing of memory among
multiple programs, and to remove the programming burdens of a small, limited
amount of main memory. Four decades after its invention, it’s the former reason
that reigns today.

Consider a collection of programs running at once on a computer. The total
memory required by all the programs may be much larger than the amount of
main memory available on the computer, but only a fraction of this memory is
actively being used at any point in time. Main memory need contain only the
active portions of the many programs, just as a cache contains only the active por-
tion of one program. Thus, the principle of locality enables virtual memory as
well as caches, and virtual memory allows us to efficiently share the processor as
well as the main memory. Of course, to allow multiple programs to share the same
memory, we must be able to protect the programs from each other, ensuring that
a program can only read and write the portions of main memory that have been
assigned to it. 

We cannot know which programs will share the memory with other pro-
grams when we compile them. In fact, the programs sharing the memory
change dynamically while the programs are running. Because of this dynamic
interaction, we would like to compile each program into its own 

 

address space

 

—
a separate range of memory locations accessible only to this program. Virtual
memory implements the translation of a program’s address space to 

 

physical
addresses

 

. This translation process enforces 

 

protection

 

 of a program’s address
space from other programs. 

The second motivation for virtual memory is to allow a single user program to
exceed the size of primary memory. Formerly, if a program became too large for
memory, it was up to the programmer to make it fit. Programmers divided pro-
grams into pieces and then identified the pieces that were mutually exclusive.
These 

 

overlays

 

 were loaded or unloaded under user program control during exe-
cution, with the programmer ensuring that the program never tried to access an
overlay that was not loaded and that the overlays loaded never exceeded the total
size of the memory. Overlays were traditionally organized as modules, each con-
taining both code and data. Calls between procedures in different modules would
lead to overlaying of one module with another.

 
7.4

 
Virtual Memory

 

7.4

 
. . . a system has been 
devised to make the core 
drum combination appear to 
the programmer as a single 
level store, the requisite 
transfers taking place auto-
matically. 

 

Kilburn et al., “One-level stor-
age system,” 1962

 

virtual memory

 

A technique 
that uses main memory as a 
“cache” for secondary storage.

physical address An address 
in main memory.

protection A set of mecha-
nisms for ensuring that multiple 
processes sharing the processor, 
memory, or I/O devices cannot 
interfere, intentionally or unin-
tentionally, with one another by 
reading or writing each other’s 
data. These mechanisms also 
isolate the operating system 
from a user process.
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As you can well imagine, this responsibility was a substantial burden on pro-

grammers. Virtual memory, which was invented to relieve programmers of this
difficulty, automatically manages the two levels of the memory hierarchy repre-
sented by main memory (sometimes called 

 

physical memory

 

 to distinguish it from
virtual memory) and secondary storage. 

Although the concepts at work in virtual memory and in caches are the
same, their differing historical roots have led to the use of different term-
inology. A virtual memory block is called a 

 

page

 

, and a virtual memory miss is
called a 

 

page fault

 

. With virtual memory, the processor produces a 

 

virtual
address

 

, which is translated by a combination of hardware and software to a

 

physical address

 

, which in turn can be used to access main memory.
Figure 7.19 shows the virtually addressed memory with pages mapped to main
memory. This process is called 

 

address mapping 

 

or 

 

address translation

 

. Today,
the two memory hierarchy levels controlled by virtual memory are DRAMs

 

FIGURE 7.19 In virtual memory, blocks of memory (called 

 

pages

 

) are mapped from one
set of addresses (called 

 

virtual addresses

 

) to another set (called 

 

physical addresses

 

).

 

The processor generates virtual addresses while the memory is accessed using physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual page is really mapped to a
physical page. Of course, it is also possible for a virtual page to be absent from main memory and not be
mapped to a physical address, residing instead on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to
share data or code.

page fault An event that occurs 
when an accessed page is not 
present in main memory.

virtual address An address 
that corresponds to a location in 
virtual space and is translated by 
address mapping to a physical 
address when memory is 
accessed.

address translation Also 
called address mapping. The 
process by which a virtual 
address is mapped to an address 
used to access memory.

Virtual addresses Physical addresses
Address translation

Disk addresses
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and magnetic disks (see Chapter 1, page 23). If we return to our library anal-
ogy, we can think of a virtual address as the title of a book and a physical
address as the location of that book in the library, such as might be given by
the Library of Congress call number.

Virtual memory also simplifies loading the program for execution by provid-
ing 

 

relocation

 

. Relocation maps the virtual addresses used by a program to dif-
ferent physical addresses before the addresses are used to access memory. This
relocation allows us to load the program anywhere in main memory. Further-
more, all virtual memory systems in use today relocate the program as a set of
fixed-size blocks (pages), thereby eliminating the need to find a contiguous
block of memory to allocate to a program; instead, the operating system need
only find a sufficient number of pages in main memory. Formerly, relocation
problems required special hardware and special support in the operating sys-
tem; today, virtual memory also provides this function.

In virtual memory, the address is broken into a 

 

virtual page number

 

 and a 

 

page
offset

 

. Figure 7.20 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the phys-
ical address, while the page offset, which is not changed, constitutes the lower

FIGURE 7.20  Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Thus,
main memory can have at most 1 GB, while the virtual address space is 4 GB.

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation
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514 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

portion. The number of bits in the page offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory. 

Many design choices in virtual memory systems are motivated by the high cost
of a miss, which in virtual memory is traditionally called a page fault. A page fault
will take millions of clock cycles to process. (The table on page 469 shows that
main memory is about 100,000 times faster than disk.) This enormous miss pen-
alty, dominated by the time to get the first word for typical page sizes, leads to sev-
eral key decisions in designing virtual memory systems:

� Pages should be large enough to try to amortize the high access time. Sizes
from 4 KB to 16 KB are typical today. New desktop and server systems are
being developed to support 32 KB and 64 KB pages, but new embedded sys-
tems are going in the other direction, to 1 KB pages.

� Organizations that reduce the page fault rate are attractive. The primary tech-
nique used here is to allow fully associative placement of pages in memory.

� Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use
clever algorithms for choosing how to place pages because even small reduc-
tions in the miss rate will pay for the cost of such algorithms. 

� Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back. 

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than
physical addresses, the opposite can occur when the processor address size is small rel-
ative to the state of the memory technology. No single program can benefit, but a collec-
tion of programs running at the same time can benefit from not having to be swapped to
memory or by running on parallel processors. Given that Moore’s law applies to DRAM,
32-bit processors are already problematic for servers and soon for desktops. 

Elaboration: The discussion of virtual memory in this book focuses on paging, which
uses fixed-size blocks. There is also a variable-size block scheme called segmentation.
In segmentation, an address consists of two parts: a segment number and a segment
offset. The segment register is mapped to a physical address, and the offset is added
to find the actual physical address. Because the segment can vary in size, a bounds
check is also needed to make sure that the offset is within the segment. The major use

segmentation A variable-size 
address mapping scheme in 
which an address consists of two 
parts: a segment number, which 
is mapped to a physical address, 
and a segment offset.
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7.4 Virtual Memory 515

of segmentation is to support more powerful methods of protection and sharing in an
address space. Most operating system textbooks contain extensive discussions of seg-
mentation compared to paging and of the use of segmentation to logically share the
address space. The major disadvantage of segmentation is that it splits the address
space into logically separate pieces that must be manipulated as a two-part
address: the segment number and the offset. Paging, in contrast, makes the boundary
between page number and offset invisible to programmers and compilers. 

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful
because of the awkwardness and performance penalties inherent in a two-part address
of which programmers and compilers must be aware.

 Many architectures divide the address space into large fixed-size blocks that sim-
plify protection between the operating system and user programs and increase the effi-
ciency of implementing paging. Although these divisions are often called “segments,”
this mechanism is much simpler than variable block size segmentation and is not visi-
ble to user programs; we discuss it in more detail shortly. 

Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page it
wants when a page fault occurs. For example, the operating system can use a
sophisticated algorithm and complex data structures, which track page usage, to
try to choose a page that will not be needed for a long time. The ability to use a
clever and flexible replacement scheme reduces the page fault rate and simplifies
the use of fully associative placement of pages. 

As mentioned in Section 7.3, the difficulty in using fully associative place-
ment is in locating an entry, since it can be anywhere in the upper level of the
hierarchy. A full search is impractical. In virtual memory systems, we locate
pages by using a table that indexes the memory; this structure is called a page
table and resides in memory. A page table is indexed with the page number from
the virtual address to discover the corresponding physical page number. Each
program has its own page table, which maps the virtual address space of that
program to main memory. In our library analogy, the page table corresponds to
a mapping between book titles and library locations. Just as the card catalog
may contain entries for books in another library on campus rather than the
local branch library, we will see that the page table may contain entries for pages
not present in memory. To indicate the location of the page table in memory,
the hardware includes a register that points to the start of the page table; we call
this the page table register. Assume for now that the page table is in a fixed and
contiguous area of memory. 

page table The table contain-
ing the virtual to physical 
address translations in a virtual 
memory system. The table, 
which is stored in memory, is 
typically indexed by the virtual 
page number; each entry in the 
table contains the physical page 
number for that virtual page if 
the page is currently in memory.
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516 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Figure 7.21 uses the page table register, the virtual address, and the indicated page
table to show how the hardware can form a physical address. A valid bit is used in
each page table entry, just as we did in a cache. If the bit is off, the page is not present
in main memory and a page fault occurs. If the bit is on, the page is in memory and
the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no
tags are required. In cache terminology, the index that is used to access the page
table consists of the full block address, which is the virtual page number. 

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we discuss later in this section. Once the operating system gets control, it must
find the page in the next level of the hierarchy (usually magnetic disk) and decide
where to place the requested page in main memory. 

The virtual address alone does not immediately tell us where the page is on
disk. Returning to our library analogy, we cannot find the location of a library
book on the shelves just by knowing its title. Instead, we go to the catalog and look
up the book, obtaining an address for the location on the shelves, such as the
Library of Congress call number. Likewise, in a virtual memory system, we must
keep track of the location on disk of each page in virtual address space. 

Hardware/
Software
Interface

The page table, together with the program counter and the registers, specifies the
state of a program. If we want to allow another program to use the processor, we
must save this state. Later, after restoring this state, the program can continue exe-
cution. We often refer to this state as a process. The process is considered active
when it is in possession of the processor; otherwise, it is considered inactive. The
operating system can make a process active by loading the process’s state, includ-
ing the program counter, which will initiate execution at the value of the saved
program counter. 

The process’s address space, and hence all the data it can access in memory, is
defined by its page table, which resides in memory. Rather than save the entire
page table, the operating system simply loads the page table register to point to the
page table of the process it wants to make active. Each process has its own page
table, since different processes use the same virtual addresses. The operating sys-
tem is responsible for allocating the physical memory and updating the page
tables, so that the virtual address spaces of different processes do not collide. As
we will see shortly, the use of separate page tables also provides protection of one
process from another. 
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7.4 Virtual Memory 517

Because we do not know ahead of time when a page in memory will be chosen
to be replaced, the operating system usually creates the space on disk for all the
pages of a process when it creates the process. This disk space is called the swap
space. At that time, it also creates a data structure to record where each virtual
page is stored on disk. This data structure may be part of the page table or may be
an auxiliary data structure indexed in the same way as the page table. Figure 7.22

FIGURE 7.21 The page table is indexed with the virtual page number to obtain the corresponding portion of the physical
address. The starting address of the page table is given by the page table pointer. In this figure, the page size is 212 bytes, or 4 KB. The virtual address
space is 232 bytes, or 4 GB, and the physical address space is 230 bytes, which allows main memory of up to 1 GB. The number of entries in the page
table is 220, or 1 million entries. The valid bit for each entry indicates whether the mapping is legal. If it is off, then the page is not present in memory.
Although the page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of indexing. The extra bits
would be used to store additional information that needs to be kept on a per-page basis, such as protection.

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18

swap space The space on the 
disk reserved for the full virtual 
memory space of a process.
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518 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

shows the organization when a single table holds either the physical page number
or the disk address. 

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs, if all
the pages in main memory are in use, the operating system must choose a page to
replace. Because we want to minimize the number of page faults, most operating
systems try to choose a page that they hypothesize will not be needed in the near
future. Using the past to predict the future, operating systems follow the least
recently used (LRU) replacement scheme, which we mentioned in Section 7.3.
The operating system searches for the least recently used page, making the
assumption that a page that has not been used in a long time is less likely to be
needed than a more recently accessed page. The replaced pages are written to swap
space on the disk. In case you are wondering, the operating system is just another

FIGURE 7.22 The page table maps each page in virtual memory to either a page in
main memory or a page stored on disk, which is the next level in the hierarchy. The vir-
tual page number is used to index the page table. If the valid bit is on, the page table supplies the physical
page number (i.e., the starting address of the page in memory) corresponding to the virtual page. If the
valid bit is off, the page currently resides only on disk, at a specified disk address. In many systems, the
table of physical page addresses and disk page addresses, while logically one table, is stored in two sepa-
rate data structures. Dual tables are justified in part because we must keep the disk addresses of all the
pages, even if they are currently in main memory. Remember that the pages in main memory and the
pages on disk are identical in size.

Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid
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7.4 Virtual Memory 519

process, and these tables controlling memory are in memory; the details of this
seeming contradiction will be explained shortly. 

For example, suppose the page references (in order) were 10, 12, 9, 7, 11, 10,
and then we referenced page 8, which was not present in memory. The LRU page
is 12; in LRU replacement, we would replace page 12 in main memory with page
8. If the next reference also generated a page fault, we would replace page 9, since
it would then be the LRU among the pages present in memory.    

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table
entry, we can compute the total page table size:

That is, we would need to use 4 MB of memory for each program in execution at any
time. On a computer with tens to hundreds of active programs and a fixed-size page
table, most or all of the memory would be tied up in page tables! 

A range of techniques is used to reduce the amount of storage required for the page
table. The five techniques below aim at reducing the total maximum storage required as
well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the page
table for a given process. If the virtual page number becomes larger than the con-
tents of the limit register, entries must be added to the page table. This technique

Implementing a completely accurate LRU scheme is too expensive, since it
requires updating a data structure on every memory reference. Instead, most
operating systems approximate LRU by keeping track of which pages have and
which pages have not been recently used. To help the operating system estimate
the LRU pages, some computers provide a use bit or reference bit, which is set
whenever a page is accessed. The operating system periodically clears the refer-
ence bits and later records them so it can determine which pages were touched
during a particular time period. With this usage information, the operating sys-
tem can select a page that is among the least recently referenced (detected by hav-
ing its reference bit off). If this bit is not provided by the hardware, the operating
system must find another way to estimate which pages have been accessed.

Hardware/
Software
Interface

reference bit Also called use 
bit. A field that is set whenever a 
page is accessed and that is used 
to implement LRU or other 
replacement schemes.

Number of page table entries 232

212
--------------- 220= =

Size of page table 220 page table entries 22  bytes
page table entry
 ----------------------------------------------------------------------------- ×  4  MB = =
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allows the page table to grow as a process consumes more space. Thus, the page
table will only be large if the process is using many pages of virtual address space.
This technique requires that the address space expand in only one direction.

2. Allowing growth in only one direction is not sufficient, since most languages re-
quire two areas whose size is expandable: one area holds the stack and the other
area holds the heap. Because of this duality, it is convenient to divide the page
table and let it grow from the highest address down, as well as from the lowest
address up. This means that there will be two separate page tables and two sep-
arate limits. The use of two page tables breaks the address space into two seg-
ments. The high-order bit of an address usually determines which segment and
thus which page table to use for that address. Since the segment is specified by
the high-order address bit, each segment can be as large as one-half of the ad-
dress space. A limit register for each segment specifies the current size of the seg-
ment, which grows in units of pages. This type of segmentation is used by many
architectures, including MIPS. Unlike the type of segmentation discussed in the
second elaboration on page 514, this form of segmentation is invisible to the ap-
plication program, although not to the operating system. The major disadvantage
of this scheme is that it does not work well when the address space is used in a
sparse fashion rather than as a contiguous set of virtual addresses. 

3. Another approach to reducing the page table size is to apply a hashing function to
the virtual address so that the page table data structure need be only the size of
the number of 

 

physical

 

 pages in main memory. Such a structure is called an

 

inverted page table

 

. Of course, the lookup process is slightly more complex with
an inverted page table because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of page
table storage. The first level maps large fixed-size blocks of virtual address space,
perhaps 64 to 256 pages in total. These large blocks are sometimes called seg-
ments, and this first-level mapping table is sometimes called a segment table,
though the segments are invisible to the user. Each entry in the segment table in-
dicates whether any pages in that segment are allocated and, if so, points to a
page table for that segment. Address translation happens by first looking in the
segment table, using the highest-order bits of the address. If the segment address
is valid, the next set of high-order bits is used to index the page table indicated by
the segment table entry. This scheme allows the address space to be used in a
sparse fashion (multiple noncontiguous segments can be active) without having to
allocate the entire page table. Such schemes are particularly useful with very large
address spaces and in software systems that require noncontiguous allocation.
The primary disadvantage of this two-level mapping is the more complex process
for address translation. 

5. To reduce the actual main memory tied up in page tables, most modern systems
also allow the page tables to be paged. Although this sounds tricky, it works by
using the same basic ideas of virtual memory and simply allowing the page tables
to reside in the virtual address space. In addition, there are some small but critical
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problems, such as a never-ending series of page faults, which must be avoided.
How these problems are overcome is both very detailed and typically highly pro-
cessor specific. In brief, these problems are avoided by placing all the page tables
in the address space of the operating system and placing at least some of the
page tables for the system in a portion of main memory that is physically ad-
dressed and is always present and thus never on disk. 

 

What about Writes?

 

The difference between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes can be used, although we need a
write buffer to hide the latency of the write from the processor. In a virtual mem-
ory system, writes to the next level of the hierarchy (disk) take millions of proces-
sor clock cycles; therefore, building a write buffer to allow the system to write
through to disk would be completely impractical. Instead, virtual memory sys-
tems must use write-back, performing the individual writes into the page in mem-
ory and copying the page back to disk when it is replaced in the memory. This
copying back to the lower level in the hierarchy is the source of the other name for
this technique of handling writes, namely, 

 

copy-back

 

.  

 

Making Address Translation Fast: The TLB

 

Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address and
a second access to get the data. The key to improving access performance is to rely on
locality of reference to the page table. When a translation for a virtual page number is
used, it will probably be needed again in the near future because the references to the
words on that page have both temporal and spatial locality. 

A write-back scheme has another major advantage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying
back an entire page is much more efficient than writing individual words back to
the disk. A write-back operation, although more efficient than transferring indi-
vidual words, is still costly. Thus, we would like to know whether a page 

 

needs

 

 to
be copied back when we choose to replace it. To track whether a page has been
written since it was read into the memory, a 

 

dirty bit

 

 is added to the page table.
The dirty bit is set when any word in a page is written. If the operating system
chooses to replace the page, the dirty bit indicates whether the page needs to be
written out before its location in memory can be given to another page.  

Hardware/ 
Software 
Interface
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Accordingly, modern processors include a special cache that keeps track of
recently used translations. This special address translation cache is traditionally
referred to as a 

 

translation-lookaside buffer

 

 

 

(TLB), although it would be more
accurate to call it a translation cache. The TLB corresponds to that little piece of
paper we typically use to record the location of a set of books we look up in the
card catalog; rather than continually searching the entire catalog, we record the
location of several books and use the scrap of paper as a cache of Library of Con-
gress call numbers.

Figure 7.23 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number. Because
we will no longer access the page table on every reference, instead accessing the TLB,
the TLB will need to include other bits, such as the dirty and the reference bit. 

translation-lookaside buffer 
(TLB) A cache that keeps track 
of recently used address map-
pings to avoid an access to the 
page table.

 

FIGURE 7.23 The TLB acts as a cache on the page table for the entries that map to physical pages only. 

 

The TLB contains a
subset of the virtual-to-physical page mappings that are in the page table. The TLB mappings are shown in color. Because the TLB is a cache, it must
have a tag field. If there is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a physical page
number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since
the page table has an entry for every virtual page, no tag field is needed; in other words, it is 

 

not

 

 a cache.
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On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the corresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is
also turned on. If a miss in the TLB occurs, we must determine whether it is a
page fault or merely a TLB miss. If the page exists in memory, then the TLB miss
indicates only that the translation is missing. In such cases, the processor can
handle the TLB miss by loading the translation from the page table into the TLB
and then trying the reference again. If the page is not present in memory, then
the TLB miss indicates a true page fault. In this case, the processor invokes the
operating system using an exception. Because the TLB has many fewer entries
than the number of pages in main memory, TLB misses will be much more fre-
quent than true page faults. 

TLB misses can be handled either in hardware or in software. In practice, with
care there can be little performance difference between the two approaches
because the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from
the page table, we will need to select a TLB entry to replace. Because the reference
and dirty bits are contained in the TLB entry, we need to copy these bits back to
the page table entry when we replace an entry. These bits are the only portion of
the TLB entry that can be changed. Using write-back––that is, copying these
entries back at miss time rather than when they are written––is very efficient,
since we expect the TLB miss rate to be small. Some systems use other techniques
to approximate the reference and dirty bits, eliminating the need to write into the
TLB except to load a new table entry on a miss.

Some typical values for a TLB might be

 

�

 

TLB size: 16–512 entries

 

�

 

Block size: 1–2 page table entries (typically 4–8 bytes each)

 
�

 
Hit time: 0.5–1 clock cycle

 

�

 
Miss penalty: 10–100 clock cycles

 

�

 

Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With a
fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page
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faults. As a result, many systems provide some support for randomly choosing an
entry to replace. We’ll examine replacement schemes in a little more detail in
Section 7.5.

 

The Intrinsity FastMATH TLB

 

To see these ideas in a real processor, let’s take a closer look at the TLB of the
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32-bit address
space; thus, the virtual page number is 20 bits long, as in the top of Figure 7.24.
The physical address is the same size as the virtual address. The TLB contains 16
entries, is fully associative, and is shared between the instruction and data refer-
ences. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual
page number for that TLB entry), the corresponding physical page number (also
20 bits), a valid bit, a dirty bit, and other bookkeeping bits. 

Figure 7.24 shows the TLB and one of the caches, while Figure 7.25 shows the
steps in processing a read or write request. When a TLB miss occurs, the MIPS
hardware saves the page number of the reference in a special register and generates
an exception. The exception invokes the operating system, which handles the miss
in software. To find the physical address for the missing page, the TLB miss rou-
tine indexes the page table using the page number of the virtual address and the
page table register, which indicates the starting address of the active process page
table. Using a special set of system instructions that can update the TLB, the oper-
ating system places the physical address from the page table into the TLB. A TLB
miss takes about 13 clock cycles, assuming the code and the page table entry are in
the instruction cache and data cache, respectively. (We will see the MIPS TLB code
on page 534.) A true page fault occurs if the page table entry does not have a valid
physical address. The hardware maintains an index that indicates the recom-
mended entry to replace; the recommended entry is chosen randomly. 

There is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. This bit prevents the program from writing into pages
for which it has only read access. If the program attempts a write and the write
access bit is off, an exception is generated. The write access bit forms part of the
protection mechanism, which we discuss shortly.

 

Integrating Virtual Memory, TLBs, and Caches

 

Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
plays an important role in maintaining this hierarchy by flushing the contents of
any page from the cache, when it decides to migrate that page to disk. At the same
time, the OS modifies the page tables and TLB, so that an attempt to access any
data on the page will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of
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FIGURE 7.24 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity Fast-
MATH. 

 

This figure shows the organization of the TLB and the data cache assuming a 4 KB page size. This diagram focuses on a read; Figure 7.25
describes how to handle writes. Note that unlike Figure 7.9 on page 486, the tag and data RAMs are split. By addressing the long but narrow data RAM
with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While the cache is direct
mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against the virtual page number,
since the entry of interest can be anywhere in the TLB. If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical
page number together with bits from the page offset form the index that is used to access the cache. (The Intrinsity actually has a 16 KB page size; the
elaboration on page 528 explains how it works.)
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FIGURE 7.25 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. 

 

If the TLB generates a hit, the cache
can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall while the data is
brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buffer if we
assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory. Write-back requires writes to
set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write miss if the block to be replaced is dirty.
Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB hit occurs, which means that the data must be
present in memory. The relationship between TLB misses and cache misses is examined further in the following example and the exercises at the end
of this chapter.

Yes
Write access

bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception

Physical address
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the memory hierarchy: the TLB, the page table, and the cache. The following
example illustrates these interactions in more detail.

 

Elaboration:

 

Figure 7.26 assumes that all memory addresses are translated to
physical addresses before the cache is accessed. In this organization, the cache is

 

physically indexed

 

 and 

 

physically tagged

 

 (both the cache index and tag are physical,
rather than virtual, addresses). In such a system, the amount of time to access mem-
ory, assuming a cache hit, must accommodate both a TLB access and a cache access;
of course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a

 

 

 

virtually addressed cache

 

,

 

 and it uses tags that are
virtual addresses; hence, such a cache is 

 

virtually indexed

 

 and 

 

virtually tagged

 

. In such
caches, the address translation hardware (TLB) is unused during the normal cache
access, since the cache is accessed with a virtual address that has not been trans-
lated to a physical address. This takes the TLB out of the critical path, reducing cache

 

Overall Operation of a Memory Hierarchy

 

In a memory hierarchy like that of Figure 7.24 that includes a TLB and a
cache organized as shown, a memory reference can encounter three different
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the
combinations of these three events with one or more occurring (seven possi-
bilities). For each possibility, state whether this event can actually occur and
under what circumstances.

Figure 7.26 shows the possible circumstances and whether they can arise in
practice or not.

 

 

 

TLB
Page 
table Cache Possible? If so, under what circumstance?

 

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

 

FIGURE 7.26 The possible combinations of events in the TLB, virtual memory system,
and cache. 

 

Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,
cache miss) but never detected. 

EXAMPLE

ANSWER

virtually addressed cache A 
cache that is accessed with a vir-
tual address rather than a physi-
cal address.
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528 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

latency. When a cache miss occurs, however, the processor needs to translate the
address to a physical address so that it can fetch the cache block from main memory. 

When the cache is accessed with a virtual address and pages are shared between
programs (which may access them with different virtual addresses), there is the possi-
bility of aliasing. Aliasing occurs when the same object has two names—in this case,
two virtual addresses for the same page. This ambiguity creates a problem because a
word on such a page may be cached in two different locations, each corresponding to
different virtual addresses. This ambiguity would allow one program to write the data
without the other program being aware that the data had changed. Completely virtually
addressed caches either introduce design limitations on the cache and TLB to reduce
aliases or require the operating system, and possibly the user, to take steps to ensure
that aliases do not occur. 

Figure 7.24 assumed a 4 KB page size, but it’s really 16 KB. The Intrinsity Fast-
MATH uses such a memory system organization. The cache and TLB are still accessed
in parallel, so the upper 2 bits of the cache index must be virtual. Hence, up to four
cache entries could be aliased to the same physical memory address. As the L2 cache
on the chip includes all entries in the L1 caches, on an L1 miss it checks the other
three possible cache locations in the L2 cache for aliases. If it finds one, it flushes it
from the caches to prevent aliases from occurring.

A common compromise between these two design points is caches that are virtually
indexed (sometimes using just the page offset portion of the address, which is really a
physical address since it is untranslated), but use physical tags. These designs, which
are virtually indexed but physically tagged, attempt to achieve the performance advan-
tages of virtually indexed caches with the architecturally simpler advantages of a physi-
cally addressed cache. For example, there is no alias problem in this case. The L1 data
cache of the Pentium 4 is an example, as would the Intrinsity L1 data cache if the page
size was 4 KB. To pull off this trick, there must be careful coordination between the
minimum page size, the cache size, and associativity.

Elaboration: The FastMATH TLB is a bit more complicated than in Figure 7.24. MIPS
includes two physical page mappings per virtual page number, thereby mapping an even-
odd pair of virtual page numbers into two physical page numbers. Hence, the tag is 1 bit
narrower since each entry corresponds to two pages. The least significant bit of the vir-
tual page number selects between the two physical pages. There are separate book-
keeping bits for each physical page. This optimization doubles the amount of memory
mapped per TLB entry. As the elaboration on page 530 explains, the tag field actually
includes an 8-bit address space ID field to reduce the cost of context switches. To sup-
port the variable page sizes mentioned on page 537, there is also a 32-bit mask field
that determines the dividing line between the virtual page address and the page offset.

Implementing Protection with Virtual Memory 

One of the most important functions for virtual memory is to allow sharing of a
single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must

aliasing A situation in which 
the same object is accessed by 
two addresses; can occur in vir-
tual memory when there are two 
virtual addresses for the same 
physical page. 

physically addressed cache
A cache that is addressed by a 
physical address.
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7.4 Virtual Memory 529

ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or
into the operating system either intentionally or unintentionally. For example, if
the program that maintains student grades were running on a computer at the
same time as the programs of the students in the first programming course, we
wouldn’t want the errant program of a beginner to write over someone’s grades.
The write access bit in the TLB can protect a page from being written. Without
this level of protection, computer viruses would be even more widespread.

We also want to prevent a process from reading the data of another process.
For example, we wouldn’t want a student program to read the grades while they
were in the processor’s memory. Once we begin sharing main memory, we must
provide the ability for a process to protect its data from both reading and writ-
ing by another process; otherwise, sharing the main memory will be a mixed
blessing!

To enable the operating system to implement protection in the virtual memory sys-
tem, the hardware must provide at least the three basic capabilities summarized below.

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not
write. This includes the user/supervisor mode bit, which dictates whether
the processor is in user or supervisor mode, the page table pointer, and the
TLB. To write these elements, the operating system uses special instructions
that are only available in supervisor mode. 

3. Provide mechanisms whereby the processor can go from user mode to
supervisor mode, and vice versa. The first direction is typically accom-
plished by a system call exception, implemented as a special instruction
(syscall in the MIPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception, the program
counter from the point of the system call is saved in the exception PC (EPC),
and the processor is placed in supervisor mode. To return to user mode
from the exception, use the return from exception (ERET) instruction, which
resets to user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating sys-
tem’s address space, the operating system can change the page tables while pre-
venting a user process from changing them, ensuring that a user process can
access only the storage provided to it by the operating system.

Hardware/
Software
Interface
kernel mode Also called 
supervisor mode. A mode 
indicating that a running pro-
cess is an operating system 
process.

system call A special instruc-
tion that transfers control from 
user mode to a dedicated loca-
tion in supervisor code space, 
invoking the exception mecha-
nism in the process. 
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530 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access
another’s data. Of course, this also requires that a user process be unable to change
the page table mapping. The operating system can assure safety if it prevents the
user process from modifying its own page tables. Yet, the operating system must
be able to modify the page tables. Placing the page tables in the protected address
space of the operating system satisfies both requirements.

When processes want to share information in a limited way, the operating sys-
tem must assist them, since accessing the information of another process requires
changing the page table of the accessing process. The write access bit can be used
to restrict the sharing to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say, P1,
to read a page owned by process P2, P2 would ask the operating system to create a
page table entry for a virtual page in P1’s address space that points to the same
physical page that P2 wants to share. The operating system could use the write
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process P1
to running process P2 (called a context switch or process switch), it must ensure that P2
cannot get access to the page tables of P1 because that would compromise protection. If
there is no TLB, it suffices to change the page table register to point to P2’s page table
(rather than to P1’s); with a TLB, we must clear the TLB entries that belong to P1—both
to protect the data of P1 and to force the TLB to load the entries for P2. If the process
switch rate were high, this could be quite inefficient. For example, P2 might load only a
few TLB entries before the operating system switched back to P1. Unfortunately, P1
would then find that all its TLB entries were gone and would have to pay TLB misses to
reload them. This problem arises because the virtual addresses used by P1 and P2 are
the same, and we must clear out the TLB to avoid confusing these addresses. 

A common alternative is to extend the virtual address space by adding a process
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID
(ASID) field for this purpose. This small field identifies the currently running process; it
is kept in a register loaded by the operating system when it switches processes. The
process identifier is concatenated to the tag portion of the TLB, so that a TLB hit
occurs only if both the page number and the process identifier match. This combination
eliminates the need to clear the TLB, except on rare occasions. 

Similar problems can occur for a cache, since on a process switch the cache will
contain data from the running process. These problems arise in different ways for phys-
ically addressed and virtually addressed caches, and a variety of different solutions,
such as process identifiers, are used to ensure that a process gets its own data. 

context switch A changing of 
the internal state of the proces-
sor to allow a different process 
to use the processor that 
includes saving the state needed 
to return to the currently exe-
cuting process.
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7.4 Virtual Memory 531

Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is straightfor-
ward when we get a TLB hit, handling TLB misses and page faults is more com-
plex. A TLB miss occurs when no entry in the TLB matches a virtual address. A
TLB miss can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry. 

2. The page is not present in memory, and we need to transfer control to the
operating system to deal with a page fault. 

How do we know which of these two circumstances has occurred? When we pro-
cess the TLB miss, we will look for a page table entry to bring into the TLB. If the
matching page table entry has a valid bit that is turned off, then the corresponding
page is not in memory and we have a page fault, rather than just a TLB miss. If the
valid bit is on, we can simply retrieve the desired entry. 

A TLB miss can be handled in software or hardware because it will require only
a short sequence of operations to copy a valid page table entry from memory into
the TLB. MIPS traditionally handles a TLB miss in software. It brings in the page
table entry from memory and then reexecutes the instruction that caused the TLB
miss. Upon reexecuting it will get a TLB hit. If the page table entry indicates the
page is not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism to
interrupt the active process, transferring control to the operating system, and later
resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruction
after the page fault is handled, the program counter of the instruction that caused
the page fault must be saved. Just as in Chapters 5 and 6, the exception program
counter (EPC) is used to hold this value. 

In addition, a TLB miss or page fault exception must be asserted by the end of
the same clock cycle that the memory access occurs, so that the next clock cycle
will begin exception processing rather than continue normal instruction execu-
tion. If the page fault was not recognized in this clock cycle, a load instruction
could overwrite a register, and this could be disastrous when we try to restart the
instruction. For example, consider the instruction lw $1,0($1): the computer
must be able to prevent the write pipeline stage from occurring; otherwise, it
could not properly restart the instruction, since the contents of $1 would have
been destroyed. A similar complication arises on stores. We must prevent the write
into memory from actually completing when there is a page fault; this is usually
done by deasserting the write control line to the memory.
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532 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Once the operating system knows the virtual address that caused the page fault,
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ-
ten out to disk before we can bring a new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical
page. 

Register CP0 register number Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 7.27 MIPS control registers. These are considered to be in coprocessor 0, and hence are
read using mfc0 and written using mtc0.

Hardware/
Software
Interface

Between the time we begin executing the exception handler in the operating sys-
tem and the time that the operating system has saved all the state of the process,
the operating system is particularly vulnerable. For example, if another excep-
tion occurred when we were processing the first exception in the operating sys-
tem, the control unit would overwrite the exception program counter, making it
impossible to return to the instruction that caused the page fault! We can avoid
this disaster by providing the ability to disable and enable exceptions. When an
exception first occurs, the processor sets a bit that disables all other exceptions;
this could happen at the same time the processor sets the supervisor mode bit.
The operating system will then save just enough state to allow it to recover if
another exception occurs—namely, the exception program counter and Cause
register. EPC and Cause are two of the special control registers that help with
exceptions, TLB misses, and page faults; Figure 7.27 shows the rest. The operating
system can then reenable exceptions. These steps make sure that exceptions will
not cause the processor to lose any state and thereby be unable to restart execution
of the interrupting instruction.

exception enable Also called 
interrupt enable. A signal or 
action that controls whether the 
process responds to an excep-
tion or not; necessary for pre-
venting the occurrence of 
exceptions during intervals 
before the processor has safely 
saved the state needed to restart.
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7.4 Virtual Memory 533

Of course, this last step will take millions of processor clock cycles (so will the sec-
ond if the replaced page is dirty); accordingly, the operating system will usually
select another process to execute in the processor until the disk access completes.
Because the operating system has saved the state of the process, it can freely give
control of the processor to another process. 

When the read of the page from disk is complete, the operating system can
restore the state of the process that originally caused the page fault and execute the
instruction that returns from the exception. This instruction will reset the proces-
sor from kernel to user mode, as well as restore the program counter. The user
process then reexecutes the instruction that faulted, accesses the requested page
successfully, and continues execution.

Page fault exceptions for data accesses are difficult to implement properly in a
processor because of a combination of three characteristics:

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing
had occurred. 

Making instructions restartable, so that the exception can be handled and the
instruction later continued, is relatively easy in an architecture like the MIPS.
Because each instruction writes only one data item and this write occurs at the
end of the instruction cycle, we can simply prevent the instruction from complet-
ing (by not writing) and restart the instruction at the beginning. 

For processors with much more complex instructions that may touch many
memory locations and write many data items, making instructions restartable is
much harder. Processing one instruction may generate a number of page faults
in the middle of the instruction. For example, some processors have block move
instructions that touch thousands of data words. In such processors, instruc-
tions often cannot be restarted from the beginning, as we do for MIPS instruc-
tions. Instead, the instruction must be interrupted and later continued
midstream in its execution. Resuming an instruction in the middle of its execu-
tion usually requires saving some special state, processing the exception, and
restoring that special state. Making this work properly requires careful and
detailed coordination between the exception-handling code in the operating
system and the hardware.

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware
saves the page number of the reference in a special register called BadVAddr and
generates an exception.

The exception invokes the operating system, which handles the miss in software.
Control is transferred to address 8000 0000hex, the location of the TLB miss han-
dler. To find the physical address for the missing page, the TLB miss routine indexes

restartable instruction An 
instruction that can resume exe-
cution after an exception is 
resolved without the exception’s 
affecting the result of the 
instruction.

handler Name of a software 
routine invoked to “handle” an 
exception or interrupt.
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534 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

the page table using the page number of the virtual address and the page table regis-
ter, which indicates the starting address of the active process page table. To make this
indexing fast, MIPS hardware places everything you need in the special Context
register: the upper 12 bits have the address of the base of the page table, and the next
18 bits have the virtual address of the missing page. Each page table entry is one
word, so the last 2 bits are 0. Thus, the first two instructions copy the Context regis-
ter into the kernel temporary register $k1 and then load the page table entry from
that address into $k1. Recall that $k0 and $k1 are reserved for the operating system
to use without saving; a major reason for this convention is to make the TLB miss
handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:
mfc0 $k1,Context # copy address of PTE into temp $k1
lw $k1, 0($k1) # put PTE into temp $k1
mtc0 $k1,EntryLo # put PTE into special register EntryLo
tlbwr # put EntryLo into TLB entry at Random
eret # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the
TLB. The instruction tlbwr copies from control register EntryLo into the TLB
entry selected by the control register Random. Random implements random
replacement, so it is basically a free-running counter. A TLB miss takes about a
dozen clock cycles. 

Note that the TLB miss handler does not check to see if the page table entry is
valid. Because the exception for TLB entry missing is much more frequent than a
page fault, the operating system loads the TLB from the page table without exam-
ining the entry and restarts the instruction. If the entry is invalid, another and dif-
ferent exception occurs, and the operating system recognizes the page fault. This
method makes the frequent case of a TLB miss fast, at a slight performance pen-
alty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers
control to 8000 0180hex, a different address than the TLB miss handler. This is the
general address for exception; TLB miss has a special entry point to lower the pen-
alty for a TLB miss. The operating system uses the exception Cause register to
diagnose the cause of the exception. Because the exception is a page fault, the
operating system knows that extensive processing will be required. Thus, unlike a
TLB miss, it saves the entire state of the active process. This state includes all the
general-purpose and floating-point registers, the page table address register, the
EPC, and the exception Cause register. Since exception handlers do not usually
use the floating-point registers, the general entry point does not save them, leav-
ing that to the few handlers that need them.

Figure 7.28 sketches the MIPS code of an exception handler. Note that we save
and restore the state in MIPS code, taking care when we enable and disable excep-
tions, but we invoke C code to handle the particular exception.
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7.4 Virtual Memory 535

The virtual address that caused the fault depends on whether the fault was an
instruction or data fault. The address of the instruction that generated the fault is in
the EPC. If it was an instruction page fault, the EPC contains the virtual address of the
faulting page; otherwise, the faulting virtual address can be computed by examining
the instruction (whose address is in the EPC) to find the base register and offset field. 

Save state

Save GPR addi $k1,$sp, -XCPSIZE # save space on stack for state
sw $sp, XCT_SP($k1) # save $sp on stack
sw $v0, XCT_V0($k1) # save $v0 on stack
... # save $v1, $ai, $si, $ti,... on stack
sw $ra, XCT_RA($k1) # save $ra on stack

Save hi, lo mfhi $v0 # copy Hi
mflo $v1 # copy Lo
sw $v0, XCT_HI($k1) # save Hi value on stack
sw $v1, XCT_LI($k1) # save Lo value on stack

Save exception 
registers

mfc0 $a0, $cr # copy cause register
sw $a0, XCT_CR($k1) # save $cr value on stack
... # save $v1,....
mfc0 $a3, $sr # copy status register
sw $a3, XCT_SR($k1) # save $sr on stack

Set sp move $sp, $k1 # sp = sp - XCPSIZE

Enable nested exceptions

andi $v0, $a3, MASK1 # $v0 = $sr & MASK1, enable exceptions
mtc0 $v0, $sr # $sr = value that enables exceptions

Call C exception handler

Set $gp move $gp, GPINIT # set $gp to point to heap area

Call C code move $a0, $sp # arg1 = pointer to exception stack
jal xcpt_deliver # call C code to handle exception

Restoring state

Restore most 
GPR, hi, lo

move $at, $sp # temporary value of $sp
lw $ra, XCT_RA($at) # restore $ra from stack
... # restore $t0,...., $a1
lw $a0, XCT_A0($k1) # restore $a0 from stack

Restore status 
register

lw $v0, XCT_SR($at) # load old $sr from stack
li $v1, MASK2 # mask to disable exceptions
and $v0, $v0, $v1 # $v0 = $sr & MASK2, disenable exceptions
mtc0 $v0, $sr # set status register

Exception return

Restore $sp and 
rest of GPR 
used as 
temporary 
registers

lw $sp, XCT_SP($at) # restore $sp from stack

lw $v0, XCT_V0($at) # restore $v0 from stack

lw $v1, XCT_V1($at) # restore $v1 from stack

lw $k1, XCT_EPC($at) # copy old $epc from stack

lw $at, XCT_AT($at) # restore $at from stack

Restore ERC and 
return

mtc0 $k1, $epc # restore $epc

eret $ra # return to interrupted instruction

FIGURE 7.28 MIPS code to save and restore state on an exception.
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536 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Elaboration: This simplified version assumes that the stack pointer (sp) is valid. To
avoid the problem of a page fault during this low-level exception code, MIPS sets
aside a portion of its address space that cannot have page faults, called unmapped.
The operating system places exception entry point code and the exception stack in
unmapped memory. MIPS hardware translates vir tual addresses 8000 0000hex to
BFFF FFFFhex to physical addresses simply by ignoring the upper bits of the vir tual
address, thereby placing these addresses in the low part of physical memory. Thus,
the operating system places exception entry points and exception stacks in
unmapped memory.

Elaboration: The code in Figure 7.28 shows the MIPS-32 exception return sequence.
MIPS-I uses rfe and jr instead of eret.

Summary

Virtual memory is the name for the level of memory hierarchy that manages cach-
ing between the main memory and disk. Virtual memory allows a single program
to expand its address space beyond the limits of main memory. More importantly,
in recent computer systems virtual memory supports sharing of the main mem-
ory among multiple, simultaneously active processes, which together require far
more total physical main memory than exists. To support sharing, virtual mem-
ory also provides mechanisms for memory protection. 

Managing the memory hierarchy between main memory and disk is challeng-
ing because of the high cost of page faults. Several techniques are used to reduce
the miss rate:

1. Blocks, called pages, are made large to take advantage of spatial locality and
to reduce the miss rate.

2. The mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a write-back scheme and also
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged
pages back to disk.

The virtual memory mechanism provides address translation from a virtual
address used by the program to the physical address space used for accessing
memory. This address translation allows protected sharing of the main memory
and provides several additional benefits, such as simplifying memory allocation.
To ensure that processes are protected from each other requires that only the

unmapped A portion of the 
address space that cannot have 
page faults.
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7.4 Virtual Memory 537

operating system can change the address translations, which is implemented by
preventing user programs from changing the page tables. Controlled sharing of
pages among processes can be implemented with the help of the operating sys-
tem and access bits in the page table that indicate whether the user program has
read or write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would have too much overhead and caches would be
pointless! Instead, a TLB acts as a cache for translations from the page table.
Addresses are then translated from virtual to physical using the translations in
the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. The next section discusses this common framework. 

Although virtual memory was invented to enable a small memory to act as a
large one, the performance difference between disk and memory means that if
a program routinely accesses more virtual memory than it has physical mem-
ory it will run very slowly. Such a program would be continuously swapping
pages between memory and disk, called thrashing. Thrashing is a disaster if it
occurs, but it is rare. If your program thrashes, the easiest solution is to run it
on a computer with more memory or buy more memory for your computer. A
more complex choice is to reexamine your algorithm and data structures to
see if you can change the locality and thereby reduce the number of pages that
your program uses simultaneously. This set of pages is informally called the
working set.

A more common performance problem is TLB misses. Since a TLB might han-
dle only 32–64 page entries at a time, a program could easily see a high TLB miss
rate, as the processor may access less than a quarter megabyte directly: 64 × 4 KB =
0.25 MB. For example, TLB misses are often a challenge for Radix Sort. To try to
alleviate this problem, most computer architectures now support variable page
sizes. For example, in addition to the standard 4 KB page, MIPS hardware sup-
ports 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages.
Hence, if a program uses large page sizes, it can access more memory directly
without TLB misses. 

The practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing
TLB misses is to reexamine the algorithm and data structures to reduce the work-
ing set of pages.

Understanding 
Program 
Performance
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538 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Check
Yourself

Match the memory hierarchy element on the left with the closest phrase on the right: 

By now, you’ve recognized that the different types of memory hierarchies share a
great deal in common. Although many of the aspects of memory hierarchies differ
quantitatively, many of the policies and features that determine how a hierarchy
functions are similar qualitatively. Figure 7.29 shows how some of the quantitative
characteristics of memory hierarchies can differ. In the rest of this section, we will
discuss the common operational aspects of memory hierarchies and how these
determine their behavior. We will examine these policies as a series of four ques-
tions that apply between any two levels of a memory hierarchy, although for sim-
plicity we will primarily use terminology for caches.

Question 1: Where Can a Block Be Placed? 

We have seen that block placement in the upper level of the hierarchy can use a range
of schemes, from direct mapped to set associative to fully associative. As mentioned
above, this entire range of schemes can be thought of as variations on a set-associative
scheme where the number of sets and the number of blocks per set varies: 

The advantage of increasing the degree of associativity is that it usually
decreases the miss rate. The improvement in miss rate comes from reducing
misses that compete for the same location. We will examine these in more detail
shortly. First, let’s look at how much improvement is gained. Figure 7.30 shows
the data for a workload consisting of the SPEC2000 benchmarks with caches of 4

1. L1 cache a. A cache for a cache

2. L2 cache b. A cache for disks

3. Main memory c. A cache for a main memory

4. TLB d. A cache for page table entries

7.5 A Common Framework for Memory 
Hierarchies 7.5

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

Number of blocks in cache
Associativity 

---------------------------------------------------------------------------------------------------------
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7.5 A Common Framework for Memory Hierarchies 539

KB to 512 KB, varying from direct mapped to eight-way set associative. The larg-
est gains are obtained in going from direct mapped to two-way set associative,
which yields between a 20% and 30% reduction in the miss rate. As cache sizes
grow, the relative improvement from associativity increases only slightly; since the
overall miss rate of a larger cache is lower, the opportunity for improving the miss

Feature
Typical values
for L1 caches

Typical values
for L2 caches

Typical values for
paged memory

Typical values
for a TLB

Total size in blocks 250–2000 15,000–50,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 2000–3000 500,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 7.29 The key quantitative design parameters that characterize the major elements of memory hierarchy in a com-
puter. These are typical values for these levels as of 2006. Although the range of values is wide, this is partially because many of the values that have
shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. 

FIGURE 7.30 The data cache miss rates for each of eight cache sizes improve as the
associativity increases. While the benefit of going from one-way (direct mapped) to two-way set asso-
ciative is significant, the benefits of further associativity are smaller (e.g., 1%–10% improvement going
from two-way to four-way versus 20%–30% improvement going from one-way to two-way). There is even
less improvement in going from four-way to eight-way set associative, which, in turn, comes very close to
the miss rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit from
associativity because the base miss rate of a small cache is larger. Figure 7.15 explains how this data was col-
lected. 

Associativity

M
is

s 
ra

te

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB
32 KB

64 KB 128 KB
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540 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

rate decreases and the absolute improvement in the miss rate from associativity
shrinks significantly. The potential disadvantages of associativity, as we mentioned
earlier, are increased cost and slower access time. 

Question 2: How Is a Block Found?

The choice of how we locate a block depends on the block placement scheme,
since that dictates the number of possible locations. We can summarize the
schemes as follows:

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware. Including the L2
cache on the chip enables much higher associativity, because the hit times are not
as critical and the designer does not have to rely on standard SRAM chips as the
building blocks. Fully associative caches are prohibitive except for small sizes,
where the cost of the comparators is not overwhelming and where the absolute
miss rate improvements are greatest.

In virtual memory systems, a separate mapping table (the page table) is kept to
index the memory. In addition to the storage required for the table, using an index
table requires an extra memory access. The choice of full associativity for page
placement and the extra table is motivated by four facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes
that are designed to reduce the miss rate. 

3. The full map can be easily indexed with no extra hardware and no searching
required. 

4. The large page size means the page table size overhead is relatively small.
(The use of a separate lookup table, like a page table for virtual memory, is
not practical for a cache because the table would be much larger than a page
table and could not be accessed quickly.)

Therefore, virtual memory systems almost always use fully associative placement. 

Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full Search all cache entries Size of the cache

Separate lookup table 0
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7.5 A Common Framework for Memory Hierarchies 541

Set-associative placement is often used for caches and TLBs, where the access
combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. The
advantage in access time occurs because finding the requested block does not
depend on a comparison. Such design choices depend on many details of the
implementation, such as whether the cache is on-chip, the technology used for
implementing the cache, and the critical role of cache access time in determining
the processor cycle time. 

Question 3: Which Block Should Be Replaced
on a Cache Miss? 

When a miss occurs in an associative cache, we must decide which block to
replace. In a fully associative cache, all blocks are candidates for replacement. If
the cache is set associative, we must choose among the blocks in the set. Of course,
replacement is easy in a direct-mapped cache because there is only one candidate. 

We have already mentioned the two primary strategies for replacement in set-
associative or fully associative caches:

� Random: Candidate blocks are randomly selected, possibly using some
hardware assistance. For example, MIPS supports random replacement for
TLB misses.

� Least recently used (LRU): The block replaced is the one that has been
unused for the longest time. 

In practice, LRU is too costly to implement for hierarchies with more than a
small degree of associativity (two to four, typically), since tracking the usage infor-
mation is costly. Even for four-way set associativity, LRU is often approximated—
for example, by keeping track of which of a pair of blocks is LRU (which requires 1
bit), and then tracking which block in each pair is LRU (which requires 1 bit per
pair). 

For larger associativity, either LRU is approximated or random replacement is
used. In caches, the replacement algorithm is in hardware, which means that the
scheme should be easy to implement. Random replacement is simple to build in
hardware, and for a two-way set-associative cache, random replacement has a
miss rate about 1.1 times higher than LRU replacement. As the caches become
larger, the miss rate for both replacement strategies falls, and the absolute differ-
ence becomes small. In fact, random replacement can sometimes be better than
the simple LRU approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated since even a tiny
reduction in the miss rate can be important when the cost of a miss is enormous.
Reference bits or equivalent functionality is often provided to make it easier for

Patterson, DA, & Hennessy, JL 2007, Computer Organization and Design, Revised Printing, Third Edition : The Hardware/Software Interface, Elsevier Science, San Francisco. Available
         from: ProQuest Ebook Central. [22 February 2018].
Created from tut on 2018-02-22 03:59:51.

C
op

yr
ig

ht
 ©

 2
00

7.
 E

ls
ev

ie
r 

S
ci

en
ce

. A
ll 

rig
ht

s 
re

se
rv

ed
.


